Programa Nacional de Cartas Geológicas de la República Argentina

Hoja Geológica 3966-IV
Choele Choel

Vista del río Negro desde la margen norte de la isla de Choele Choel.

Provincia de Río Negro

Leonardo Escosteguy, Mariela Etcheverría, Alicia Folguera y Mario Franchi

Recursos Minerales: Abel Faroux y Pablo R. Getino

Supervisión: Mario Franchi
Programa Nacional de Cartas Geológicas
de la República Argentina
1:250.000

Hoja Geológica 3966-IV

Choele Choel
Provincia de Río Negro

Leonardo Escosteguy, Mariela Etcheverría, Alicia Folguera
y Mario Franchi

Recursos Minerales: Abel Faroux y Pablo R. Getino

Supervisión: Mario Franchi

Normas, dirección y supervisión del Instituto de Geología y Recursos Minerales

SERVICIO GEOLÓGICO MINERO ARGENTINO
INSTITUTO DE GEOLOGÍA Y RECURSOS MINERALES

Boletín Nº 398
Buenos Aires - 2011
RESUMEN

La Hoja 3966-IV, Choele Choel, abarca parte del sector nordeste de la provincia de Río Negro y está ubicada en una zona de transición entre las cuencas del Colorado y Neuquina. Así que la estratigrafía expuesta en ella resume la historia más moderna de la región, que abarca desde la parte alta del Neógeno hasta la actualidad. Las unidades más antiguas están constituidas en su mayoría por depósitos aluviales del Mioceno tardío-Plioceno temprano, formados por areniscas, limolitas, arcilitas y cineritas, asignados a la Formación Río Negro y por conglomerados polimícticos del Plioceno medio-Pleistoceno (Depósitos fluviales gruesos). La columna se completa con secuencias pleistocenas y holocenas, entre las que se distinguen un delgado mantón de calcarenitas, depósitos aluviales pleistocenos, ocho niveles de depósitos de planicie aluvial pertenecientes al río Negro, sedimentos eólicos y depósitos coluviales, aluviales y evaporíticos holocenos.

Estructuralmente no se observan rasgos en superficie debido a la gran cubierta sedimentaria moderna. El principal agente modelador del paisaje fue el fluvial mientras que, en forma subordinada, participaron procesos eólicos y de remoción en masa. Se reconocieron dos unidades geomorfológicas bien diferenciadas. Una está constituida por una extensa planicie estructural cubierta por gravas y por varios niveles de antiguas terrazas fluviales que le confieren al paisaje un relieve mesetiforme. La otra unidad comprende la planicie aluvial actual y la terraza más moderna del río Negro.

Los recursos mineros más importantes son los depósitos de minerales industriales, en particular de áridos, que se explotan por medio de canteras situadas a la vera de las rutas principales.

ABSTRACT

The sheet 3966-IV, Choele Choel, includes part of the northeast sector of the province of Río Negro and is located in a transition zone between the Colorado and Neuquina basins. Its exposed stratigraphy outlines the most modern history of the region, ranging from the Upper Neogene to the Present. The oldest units are formed by alluvial deposits of the Late Miocene-Early Pliocene, mostly made up of sandstones, siltstones, claystones and cinerites, assigned to the Formación Río Negro (Rio Negro Formation) and polymictic conglomerates of the Middle Pliocene-Pleistocene, Depósitos fluviales gruesos (Thick fluvial deposits). The column is completed by Pleistocene and Holocene sequences, among which the following stand out: a thin blanket of calcarenites, Pleistocene alluvial deposits, eight levels of alluvial plain deposits of to the Negro river, eolian sediments and Holocene colluvial, alluvial and evaporite deposits.

The area doesn’t show features on the surface due to the large and modern sedimentary cover. The landscape was mainly shaped by fluvial processes whereas, in a subordinated way, there were eolian and mass wasting processes that also had an influence on it. Two clearly-differentiated geomorphological units have been identified. One is a vast structural plain covered with gravel and various levels of ancient fluvial terraces that turned its landscape into a plateau. The other unit includes the current alluvial plain and the most modern terrace of the Negro river.

The most important mineral resources are the industrial mineral deposits, particularly dimensional stones, which are exploited by quarries located by the sides of the main roads.
1. INTRODUCCIÓN

UBICACIÓN DE LA HOJA Y ÁREA QUE ABARCA

La Hoja está ubicada al nordeste de la provincia de Río Negro e incluye parte de los departamentos Avellaneda, Valcheta, San Antonio Oeste, General Conesa y Pichi Mahuida (Fig. 1). Ocupa un área de aproximadamente 14.300 km² y está delimitada por los paralelos 39° y 40° de latitud Sur y los meridianos 64° 30' y 66° de longitud Oeste.

El área comprendida por esta Hoja se encuentra en una zona de transición entre dos provincias geológicas, las cuencas del Colorado y Neuquina (Ramos, 1999).

NATURALEZA DEL TRABAJO

La Hoja 3966-IV, Choele Choel, a escala 1:250.000, fue hecha siguiendo las normas establecidas por el Programa Nacional de Cartas Geológicas de la República Argentina. Para su confección se realizó un mapa preliminar que se basó en los datos obtenidos mediante la recopilación de la bibliografía de la zona y también en la interpretación de imágenes Landsat y ASTER a escalas 1:100.000 y 1:250.000. También se utilizaron fotografías aéreas a escala 1:50.000.

Los trabajos de campo fueron efectuados en dos campañas realizadas en agosto de 2008 y abril de 2009, en las que se llevaron a cabo tareas de mapeo, descripción y recolección de muestras y confección de perfiles. Con estos datos se hizo el mapa final sobre la base de la Hoja topográfica 3966-IV, Choele Choel, a escala 1:250.000, del Instituto Geográfico Nacional.

Las muestras de grano suelto fueron procesadas en los laboratorios del SEGEMAR y estudiadas por la Lic. Adelma Bayarsky. Como método de trabajo se tomó 50 g de material por muestra y se procedió a eliminar el carbonato de calcio y materia orgánica mediante digestión ácida. Para determinar la tonalidad se empleó la Carta de Colores de Rocas (Rock Color Chart). El análisis granulométrico se realizó por vía húmeda con una serie de tamices a intervalos de 1 phi, ordenados según la escala de Wentworth. Para determinar el contenido de lino y...
arcilla se usaron curvas de distribución granulométricas por Sedigraph. El reconocimiento microscópico se hizo mediante preparados a grano suelto con nitrobenzeno sobre la fracción arena muy fina. Para el análisis estadístico de las especies minerales se obtuvieron los porcentajes relativos de los mismos a partir del recuento de 200 granos por separado, y para calcular los parámetros estadísticos se utilizaron las fórmulas propuestas por Folk y Ward (1957).

El Dr. Jorge Chernicoff aportó información geofísica del basamento y la Lic. Daniela Villegas ron las fórmulas propuestas por Folk y Ward (1957).

La vegetación dominante autóctona es una rala estepa de arbustos y matas de pastos duros, entre los que predominan Groffroea decorriticans (chañar), Prosopis caldenia (caldén), Prosopis flexuosa (alarrobo), Condalia microphylla (piquillín), Prosopis alpataco (alpataco), tres especies de Larrea spp. (jarilla), Chuquinaga erinacea (uña de gato), Stipa spp. (paja vizcachera) y gramíneas. En el valle del río Negro son frecuentes los sauces colorados, cortaderas, Hordeum murinum sub. spp. (cola de zorro) y la vegetación halófita como Suaeda spp. (jume) y Atriplex spp. (zampa). En él también se cultivan frutales, cereales y forrajeras. En los campos de dunas fijas dominan los ejemplares de Hyalis argenta (olivillo), Sporobolus rigens (junquillo) y Panicum urvilleanum (tupe) (Soldano, 1947; Pereyra et al., 2003).

En la región predomina el clima árido y templado frío, denominado clima árido mesotermal (Thornwhite). En la zona de Choele Choel las precipitaciones anuales oscilan entre 100 y 300 mm y la evapotranspiración anual es de 922 mm, en tanto que la evapotranspiración anual es de 922 mm, en tanto que la evaporación anual de 26ºC en julio y 34ºC en enero (información tomada de www.rionegro.gov.ar).

El colector principal, de carácter alóctono y de régimen permanente, es el río Negro, que drena con dirección noroeste-sudeste hasta desembocar en el océano Atlántico. En el trayecto en que cruza la Hoja muestra un rumbo ligeramente diferente al del resto del río, ya que no fluye en el sentido de la pendiente regional principal (O-E), sino en dirección NNO. Río abajo, en cercanías de la estancia Negro Muerto, el curso retoma un rumbo similar al que se observa entre las localidades de Neuquén y Chimpay. A la altura de Choele Choel el ancho de su cauce es de 450 m mientras que su valle alcanza los 25 km (Soldano, 1947). Este río tiene un curso tortuoso, a veces con un cauce único y otras con varios brazos. Por sectores forma extensos meandros y contiene numerosas islas, entre las que se destacan Choele Choel Grande, Choele Choel Chica y Castre. Actualmente esta red fluvial ha sido intensamente canalizada por el hombre, entre los canales se destacan Pomona-San Antonio Oeste y Principal.

Las principales vías de acceso son las rutas nacionales 22 y 250, y las provinciales 2 y 4, las tres primeras están pavimentadas mientras que la última sólo lo está por tramos. La primera atraviesa con dirección NE la Hoja Choele Choel, conectando de este a oeste las ciudades de Río Colorado, Choele Choel y General Roca. La segunda une Choele Choel con la ciudad de General Conesa, en tanto que la provincial 4 vincula las localidades de Lamarque y Valcheta. La ruta 2 se des prende de la ruta 250 en el paraje El Solito, y se dirige a San Antonio Oeste. La región tiene, además, una gran red de caminos vecinales.

Otra vía de acceso es un ramal del Servicio Ferroviario Patagónico (ex ferrocarril General Roca) que une la ciudad de Bahía Blanca con Zapala, pasando por las localidades de Benjamin Zorrilla, Choele Choel, Darwin y Coronel Belisle.

INVESTIGACIONES ANTERIORES

Los primeros estudios geológicos de la Patagonia que incluyen esta zona fueron efectuados por Doering (1882), quien acompañó al ejército expedicionario al mando de Julio A. Roca como integrante de la comisión científica encargada de explorar los territorios que se extendían hasta el río Negro, fijado como la nueva línea de frontera con el indio. Posteriormente Roth (1898), Wichmann (1918, 1926), Groeber (1949), Feruglio (1949), Frenguelli (1957), Fidalgo y Riggi (1965, 1970) realizaron estudios regionales que abarcan esta comarca.

Los mapas que existen actualmente cubren la totalidad de la zona, aunque fueron hechos a diferentes escalas de detalle. El área fue relevada, a escala 1:250.000, por Suriano et al. (1999) en el marco del Proyecto Minero Río Negro. A escalas menores, la región está cubierta por los mapas geológico y geomorfológico de la provincia de Río Negro, a es-
calas 1:750.000 y 1:1.000.000 respectivamente (Nullo y Franchi, 1994; González Díaz y Malagnino, 1984).

2. ESTRATIGRAFÍA

RELACIONES GENERALES

La región abarcada por esta Hoja es atravesada, de noroeste a sureste, por el colector de la región, el río Negro. Éste fluye por un amplio valle limitado al norte por una barranca y al sur por terrazas escalonadas. El valle está marginado por extensas planicies estructurales cubiertas por gravas que dan lugar a un paisaje mesetiforme recortado por cañadones y abundantes bajos, algunos de grandes dimensiones, que alojan lagunas y salitrales. Sobre esta planicie se hallan depósitos cólicos de escasa altura que suelen formar campos de dunas.

La columna estratigráfica de las unidades aflorantes es reducida y abarca desde el Mioceno tardío al Holoceno (cuadro 1). La Formación Río Negro, a quien pertenecen las rocas más antiguas, aflora a largo de la barranca norte y en las márgenes de los bajos más profundos. Está formada por depósitos fluviates, entre los que se intercalan sedimentos de origen lacustre y en menor medida cólicos. Sobre la base de datos radimétricos y paleontológicos realizados fuera del ámbito de la Hoja, se ha asignado al Mioceno tardío-Plioceno temprano. La sobreyaen discordantemente los Depósitos fluviates gruesos del Plioceno medio-Pleistoceno, de amplia distribución en la zona. Éstos se asocian a los Depósitos aluviales de edad pleistocena y a un delgado Calcrete (Pleistoceno) que los corona en forma discordante. Durante el Pleistoceno-Holoceno, se formaron los depósitos aluviales antiguos y modernos del río Negro entre los que se han distinguido ocho niveles, representados por siete terrazas, y el aluvio actual. Durante el Holoceno se generaron en toda la comarca depósitos cólicos, coluviales y aluviales de poco espesor. Los depósitos evaporíticos son principalmente salitrales y se ubican en las zonas deprimidas y grandes bajos.

Cuadro 1. Cuadro cronoestratigráfico de la Hoja Choele Choel.

<table>
<thead>
<tr>
<th>Era</th>
<th>Período</th>
<th>Época</th>
<th>Unidad geológica</th>
<th>Litología principal</th>
<th>Ambiente</th>
</tr>
</thead>
<tbody>
<tr>
<td>CENOZOICO</td>
<td>Pleistoceno</td>
<td>Plioceno</td>
<td>Fm. Río Negro</td>
<td>Areniscas medias a finas con intercalaciones de limolitas, arcilitas y niveles cineríticos</td>
<td>Fluvial de ríos entrelazados. Eólico.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plioceno</td>
<td>Depósitos fluviales gruesos</td>
<td>Conglomerados polimícticos medianos a gruesos</td>
<td>Fluvial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depósitos aluviales antiguos del río Negro</td>
<td>Areniscas, conglomerados y limolitas</td>
<td>Fluvial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pleistoceno</td>
<td>Depósitos aluviales antiguos</td>
<td>Areniscas y limolitas con participación de arcilitas y conglomerados subordinados</td>
<td>Fluvial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depositos evapóniticos</td>
<td>Arcillas, cloruros y sulfatos</td>
<td>Lacustre efímero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depósitos aluviales modernos del río Negro</td>
<td>Arenas y limos con participación de arcillas y gravas subordinadas</td>
<td>Fluvial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depositos aluviales finos</td>
<td>Limos y arcillas</td>
<td>Fluvio-lacustre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depositos evapóniticos</td>
<td>Arcillas, cloruros y sulfatos</td>
<td>Lacustre efímero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depositos eólicos</td>
<td>Arenas medianas y finas</td>
<td>Campos de dunas</td>
</tr>
<tr>
<td>QUATERNARIO</td>
<td>Holoceno</td>
<td></td>
<td>Depositos aluviales y coluviales indiferenciados</td>
<td>Arenas medianas con participación de grava y limos</td>
<td>Fluvial</td>
</tr>
<tr>
<td>CENOZOICO</td>
<td>Pleistoceno</td>
<td></td>
<td>Depósitos aluviales finos</td>
<td>Limos y arcillas</td>
<td>Fluvio-lacustre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depositos evapóniticos</td>
<td>Arcillas, cloruros y sulfatos</td>
<td>Lacustre efímero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depósitos aluviales modernos del río Negro</td>
<td>Arenas y limos con participación de arcillas y gravas subordinadas</td>
<td>Fluvial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depositos eólicos</td>
<td>Arenas medianas y finas</td>
<td>Campos de dunas</td>
</tr>
</tbody>
</table>

Cuadro cronoestratigráfico de la Hoja Choele Choel.
2.1. NEÓGENO

2.1.1. MIOCENO SUPERIOR-PLIOCENO INFERIOR

Formación Río Negro (1)

Areniscas, limolitas, arcilitas y niveles cineríticos

Antecedentes

D’ Orbigny (1842) fue quien inicialmente reconoció a las areniscas de esta formación y las denominó _gres azuré_. Más tarde, Roth (1898) llamó a la unidad Areniscas del Río Negro, pero fue Andreis (1965) quien definió su actual nombre formacional y realizó su caracterización textural y mineralógica, mediante el análisis sedimentológico de las rocas aflorantes en las barrancas y acantilados próximos a la desembocadura del río Negro. Posteriormente, de Ferraríis (1966) estudió los aspectos estratigráficos. Hugo y Leanza (2001a) consideraron a esta unidad equivalente a las sedimentitas que afloran más al oeste, en cercanías del paraje Barranca del Palo, a las que Uliana (1979) y Franchi et al. (1984) denominaron Formación El Palo.

Distribución areal

En la Hoja, la formación aflora principalmente a lo largo de la barranca norte del valle del río Negro, mientras que en la ladera sur, la presencia de varios niveles de terrazas hace que sólo se observen asomos discontinuos. También se la halla en las barrancas de los bajos principales, entre los que se destaca el de Las Golondrinas por la buena exposición de afloramientos.

Litología

Predominan las areniscas medias a gruesas, de color gris a gris azulado y rosadas, con estratificación paralela y entrecruzada. Entre éstas se intercalan bancos de pelitas rosadas y lentes de conglomerados finos. Es común encontrar niveles con abundante bioturbación, pelitas con yeso y paleosuelos.

Zavala et al. (2000) y Zavala y Freije (2005), mediante un análisis sedimentológico hecho al sureste de la Hoja, en la playa Bonita, definieron la existencia de tres miembros, inferior, medio y superior. El Miembro inferior está formado por areniscas entrecruzadas de gran escala, interpretadas como de origen eólico. El Miembro medio corresponde a una intercalación de sedimentitas marinas, a la que inicialmente Ameghino (1903) asignó edad enterrriense, luego Andreis (1965) la reconoció como una intercalación dentro de la Formación Río Negro, y posteriormente Angulo y Casamiquela (1982) la denominaron Facies Balneario La Lobería. El Miembro superior está dominado por depósitos arenosos, con capas de areniscas eólicas entre las que se intercalan sedimentos finos pertenecientes a lagunas intermedianas, niveles de cenizas volcánicas y paleosuelos.

Los Miembros inferior y medio no afloran en el área de trabajo, ellos se hallan expuestos en los acantilados marinos situados al sureste, en el golfo San Matías, entre la bahía Rosas y el balneario El Cóndor. La sección que aflora en esta Hoja se considera equivalente al Miembro superior.

Con el fin de caracterizar estratigráficamente a esta unidad, en la zona de trabajo se realizaron tres perfiles de detalle, dos de ellos en la barranca norte del río Negro (uno en cercanías de la localidad de Coronel Belisle y otro próximo al establecimiento San Carlos), y el tercero en el bajo Las Golondrinas.

El perfil cercano a Coronel Belisle (Fig. 2) tiene aproximadamente 30 m de espesor y en él dominan los niveles arenosos, con intercalaciones de bancos de pelitas. Su base está compuesta por areniscas conglomerádicas de color gris azulado con estratificación paralela. Sobre ellas se dispone un depósito de areniscas grises muy gruesas con estratificación paralela e intercalaciones de lentes guijarrosos con estratificación entrecruzada. La secuencia continúa con un paquete donde alternan bancos limosos y arcillosos de entre 10 y 40 cm de colores blanquecinos y morados, que presentan bioturbación. Sobre este depósito se disponen areniscas conglomerádicas que hacía el techo pasan a areniscas gruesas, de coloración castaña y estratificación paralela, entre las que se intercala un banco de limolitas rojizas bioturbadas que contiene un nivel con morfologías interpretadas como paleodefálicas.

El perfil próximo al establecimiento San Carlos (Fig. 3) tiene aproximadamente 36 m de espesor y en él predominan las areniscas medianas, con escasas intercalaciones de bancos pelíticos. Su base está formada por una serie de delgados bancos donde alternan areniscas finas y medianas de colores castaño claro y gris, con estratificación paralela y entrecruzada, con bancos de pelitas laminares. Sobre esta secuencia se apoyan areniscas grises azuladas de grano medio a fino y estratificación entrecruzada, que hacia arriba se vuelven conglomerádicas y macizas, para luego nuevamente pasar a areniscas medianas con estratificación entrecruzada y con escasas intercalaciones de niveles pelíticos. Sobre
Figura 2. Perfil estratigráfico de la secuencia aflorante en la barranca norte del valle del río Negro, en cercanías de la localidad de Coronel Belisle (39°10'07"S-65°56'06"O).
Figura 3. Perfil estratigráfico de la secuencia que aflora en la barranca norte del valle del río Negro, en cercanías del establecimiento San Carlos (39°45'32"S-64°57'15"O).
estos estratos se apoyan areniscas muy finas de color castaño rosalado, bioturbadas, entre las que se intercalan al menos dos bancos que contienen morfologías interpretadas como paleoedáficas. Hacia arriba se disponen, mediante una discordancia erosiva, areniscas conglomerádicas con clastos pumíceos de hasta 2 cm y sobre ellas una secuencia donde bancos amalgamados de areniscas finas y bancos de areniscas medianas con estratificación paralela, de colores grises, alternan con bancos pelíticos de color castaño oscuro. Hacia el techo el perfil culmina con bancos castaños sucesivos de areniscas medianas, gruesas y conglomerádicas.

El perfil levantado en la barranca oriental del bajo Las Golondrinas (Fig. 4) tiene aproximadamente 22 m de espesor y en él existen bancos arenosos y pelíticos intercalados. Su base está compuesta por una secuencia donde alternan bancos de hasta 2 m de arcilitas y limolitas de color castaño oscuro con areniscas grises, finas a medianas. Es común que los bancos pelíticos contengan abundante yeso. Hacia el techo predominan los bancos arenosos grises con granulometrias que van desde tamaño mediano hasta grueso y con estratificación paralela. Muchos de ellos están bioturbados y con intercalaciones de lentes conglomerádicas. También se distinguieron niveles con rasgos interpretados como paleoedáficos y otros que contienen clastos de pómez, que excepcionalmente llegan a medir 10 centímetros. La seción superior del perfil presenta abundante cementación carbonática.

Ambiente de depositación

Sobre la base de los tres perfiles expuestos se puede interpretar que las secuencias fueron depositadas en un ambiente fluvial, que podría corresponder a un sistema de ríos anastomosados en cuyas planicies aluviales se alojaban pequeñas lagunas y depósitos eólicos y en donde, además, se desarrollaban actividades de organismos y plantas. Es de destacar que también hubo períodos de estabilidad en los cuales se dieron condiciones propicias para la generación de suelos. Basados en análisis de procedencia y de paleocorrientes, así como teniendo en cuenta la distribución de los depósitos, Folguera y Zárate (2009) sugirieron que estos ríos tenían las cabeceras vinculadas directamente con el sector andino y quizás fueron los precursores de los actuales ríos Negro y Colorado. De esta manera, consideraron a esta unidad como depósitos de antepaís andino.

Si bien en los perfiles levantados no hay registros de cenizas volcánicas, en algunos lugares, como en los afloramientos que se hallan próximos a la desembocadura del río Negro (Alberdi et al., 1997), existen delgados bancos piroclásticos que ponen en evidencia que, esporádicamente, la región recibía lluvias de cenizas provenientes de la actividad volcánica cordillerana.

Angulo y Casamiquela (1982), sobre la base de la presencia de pisadas de posibles megaloniquídos (perezosos) y de restos de hidrocoéridos (roedores), sugirieron que el clima bajo el cual se desarrollaba este ambiente habría sido más benigno que el actual, de transición al Dominio Subtropical.

Andreas (1965) en afloramientos ubicados al suroeste de la Hoja Choele Choe, en las barrancas del río Negro y en los acantilados marinos de los alrededores del balneario La Lobería y del faro Río Negro, realizó estudios sedimentológicos. Confeccionó histogramas y curvas acumulativas que le permitieron la clasificación granulométrica de las psamitas rionegrenses. Utilizando el ploteo de los parámetros estadísticos en los gráficos de Friedman (1961) llevó a cabo una interpretación ambiental y determinó que en gran parte corresponden a arenas fluviales. El estudio mineralógico reveló que la mayoría de los componentes clásticos eran pastas volcánicas (riolitas y andesitas basálticas) y cristales de labradorita, andesina, magnetita, hypersten, hornblenda, escaso cuarzo y feldespato alcalino. En menor proporción halló minerales pesados y accesorios como augita, opacos, granate, biotita, circon, rutilo, apatita y pistacita. Además, analizó estructuras sedimentarias direccionales y determinó que la resultante regional señalaba que las corrientes fluyeron en una dirección bien definida y constante de rumbo casi O-E (101°10’) y que en el 5% de los casos, existían paleocorrientes con direcciones opuestas, fenómeno que explicó por la deposición a partir de cursos de agua divagantes.

La Formación Río Negro, junto a otras también de edad neógena, representan el primer ciclo de sedimentación continental posterior al retiro del mar Paranense (Folguera y Zárate, 2009). Relaciones estratigráficas

La base de la unidad no está expuesta, pero fuera de los límites de esta Hoja, hacia el este, en las salinas Grandes de Anzoátegui y en el salitral de La Gotera, sobreyace discordantemente a las areniscas y areniscas limosas de la Formación Cerro Azul de edad miocena superior (Etcheverría et al., 2009). Hacia el suroeste, según datos de perforaciones, cubre a las sedimentitas marinas de la Formación Barranca Final de edad miocena media a tardía.
Figura 4. Perfil estratigráfico de la secuencia que aflora en la barranca este del bajo Las Golondrinas.

Esta secuencia se halla cubierta mediante una discordancia erosiva por los Depósitos fluviales gruesos que coronan las mesetas.

Edad

La interpretación de la edad de la Formación Río Negro ha variado a lo largo del tiempo. Ameghino (1898, 1906) le asignó edad miocena inferior; Feruglio (1927) y Kraglievich (1930) una edad miocena superior, García y García (1964) la situaron en

Fuera de los límites de esta Hoja existen, para la Formación Río Negro, edades absolutas obtenidas a partir de la datación de niveles de tefra intercalados. En la punta Cracker (golfo Nuevo), Zinsmeister et al. (1981) efectuaron dataciones K-Ar sobre tres niveles de vidrio de un horizonte de toba ubicado estratigráficamente en la parte superior de la facies marina de esta Formación. Éstas dieron edades de 9,11±0,1; 9,56±0,3 y 9,55±0,3 Ma que promedian una edad de 9,41 Ma. Alberdi et al. (1997), sobre un vidrio volcánico riolítico muy puro intercalado en la parte superior de esta unidad en la desembocadura del río Negro, realizaron una datación por el método de trazas de fisión que arrojó una edad de 4,41±0,5 Ma.

No se utiliza aquí la denominación de Rodados Patagónicos ya que este término involucra a más de una entidad geomorfológica mapeable en todo el ámbito patagónico, ya que los depósitos aquí aflorantes forman parte, en el sector comprendido entre los 38° y 41°S, de un sistema de cuatro mega abanicos aluviales, desarrollado entre el Mioceno tardío y el Pleistoceno (Folguera et al., 2011).

2.2. NEÓGENO-CUATERNARIO

2.2.1. ¿PLIOCENO MEDIO?-PLEISTOCENO

Depósitos fluviales gruesos (2)

Conglomerados polimicticos

Antecedentes

Se reconocen en la comarca en estudio un nivel de depósitos fluviales gruesos, que abarcan gran parte de la hoja. Comprenden un conjunto de conglomerados arenosos a los que en la literatura geológica se les conoce con el nombre de Rodados Patagónicos o Tehuelches, cuya extensión areal, sumado a la dificultad para determinar su edad y a la ausencia de restos fósiles, generaron por años incertidumbre con respecto a su origen.

No se utiliza aquí la denominación de Rodados Patagónicos ya que este término involucra a más de una entidad geomorfológica mapeable en todo el ámbito patagónico, ya que los depósitos aquí aflorantes forman parte, en el sector comprendido entre los 38° y 41°S, de un sistema de cuatro mega abanicos aluviales, desarrollado entre el Mioceno tardío y el Pleistoceno (Folguera et al., 2011).

Estos depósitos, en las Hojas Geológicas aledañas, han recibido diferentes nombres. Hacia el norte han sido denominados Formación Tehuelche (Silva Nieto y Espejo, 1996), hacia el este constituyen el Nivel I de los Depósitos fluviales gruesos (Etcheverría et al., 2006, 2009), hacia el sur se les conoce con el antiguo nombre de Rodados Patagónicos (Martínez et al., 2001) mientras que hacia el oeste, Hugo y Leanza (2001a) los llamaron Depósitos de la Antigua Planicie Aluvial Disectada.

En este trabajo, siguiendo a Etcheverría et al. (2006, 2009) se los ha denominado Depósitos fluviales gruesos.

Distribución areal y litología

Estos depósitos se encuentran cubriendo gran parte de la hoja, sin embargo, sólo se hallan aflo-
rantes en las barrancas de los bajos y del río Negro. Están formados por paquetes amalgamados de conglomerados polimícticos de grano mediano a grueso con matriz arenosa gruesa, entre los que se suelen intercalar bancos de areniscas gruesas a conglomerádicas. Sus principales características son los clastos imbricados y una grosera estratificación que suele ser paralela o entrecruzada planar. Por lo general, los bancos conglomerádicos son clasto sostenidos aunque existen también los matriz sostenidos. Los términos superiores están fuertemente cementados por carbonatos (Fig. 5).

Los clastos son redondeados a subredondeados y prolados, sus tamaños varían entre 1 y 10 cm y excepcionalmente llegan a medir 20 cm, están compuestos por andesitas, basaltos, riolitas, granitos, cuarzo y clastos de areniscas y pelitas de la Formación Río Negro.

La potencia de esta unidad no es constante, en la región se han medido valores que varían entre 0,5 y 15 m, este último espesor se registra en una cantera ubicada en el km 986 de la ruta nacional 22.

Ambiente de depositación
Las imágenes satelitales permiten observar, regionalmente, que en planta estos depósitos presentan una disposición triangular, correspondiente a un gran abanico aluvial fuertemente erosionado y descartado por un intrincado conjunto de paleocanales, que forman una red de drenaje de carácter distributario y, en menor medida, por bajos endorreicos alargados en el sentido de la pendiente regional.

Figura 5. Perfil esquemático de los Depósitos fluviales gruesos aflorantes en la cantera Darwin, ubicada al norte de la localidad homónima.
Estos depósitos fueron generados en un ambiente fluvial de alta energía correspondiente a las facies intermedias-distales de abanicos aluviales. La composición volcanclástica de sus clastos indica que habrían recibido aporte de la Cordillera de los Andes, de esta manera, se puede considerar que serían parte de su piedemonte distal.

Esta unidad, en el esquema presentado por Folguera et al. (2011), es equivalente a la aloformación III.

Relaciones estratigráficas y edad

Estos depósitos sobreyacen mediante una discordancia erosiva a la Formación Río Negro y en varios sectores son cubiertos por un delgado Calcrete que en parte los cementa.

Sobre la base de las relaciones estratigráficas, a los Depósitos fluviales gruesos se los sitúa en el Plioceno medio-pleistoceno.

2.3. CUATERNARIO

2.3.1. PLEISTOCENO

Calcrete (3)

Calcarenitas

Es común en la región, que sobre los Depósitos fluviales gruesos se ubique mediante un hiatus deposicional, un delgado banco de calcarenitas en el que el carbonato de calcio es tan abundante que llega a cementar la parte superior de los depósitos infrayacentes. Este Calcrete está cubierto a su vez por sedimentos eólicos o coluviales (Fig. 6 a). Aunque este tipo de depósitos está ampliamente distribuido en la provincia de Río Negro, no había sido definido como una unidad independiente. En este trabajo, siguiendo a Folguera y Zárate (2009), se le asigna carácter formacional.

En el área abarcada por esta Hoja no hay antecedentes de trabajos que traten estos depósitos, pero en la provincia de La Pampa, donde éstos adquieren mayor espesor, se han realizado algunos estudios, entre los que pueden citarse los llevados a cabo por Tapia (1935), Calmels et al. (1996), Vogt et al. (1999), Lanzillotta (2006) y Etcheverría et al. (2009).

El Calcrete tiene similar extensión y cota topográfica que los Depósitos fluviales gruesos, a los que en parte cementa. Si bien, generalmente, está cubierto por depósitos aluviales o coluviales modernos, se lo encuentra muy próximo a la superficie (Fig. 6 b) y en algunos lugares está subaflorante. Su espesor no es constante y en líneas generales aumenta de oeste a este. Los valores máximos observados son de hasta 35 cm, aunque se sabe que un poco más hacia el este adquiere espesores de hasta 1 m (Etcheverría et al., 2009).

En general el Calcrete está formado por calcarenitas blanquecinas, macizas o brechas, que se caracterizan por tener clastos subredondeados y flotantes de hasta 3 centímetros.

El ambiente de formación de este Calcrete fue analizado, un poco más al este, por Etcheverría et al. (2009). Estos autores llegaron a la conclusión de que se habría originado principalmente por procesos pedogenéticos a los que quizás se les sobreimpuso un aporte fréatico. Según Alonso-Zarza (2003) los calcretes son buenos indicadores paleoambientales y paleoclimáticos ya que ponen en evidencia periodos con reducido aporte clástico, suelos bien drenados y climas semiáridos.
Sobre la base de las relaciones estratigráficas se le asigna edad pleistocena.

Depósitos aluviales antiguos (4)

Areniscas, conglomerados y limolitas

Como se dijo anteriormente, los Depósitos aluviales gruesos corresponden a un antiguo abanico aluvial. Dicho abanico se halla disectado por una intrincada red de paleocanales poco profundos, que suelen desembocar como valles colgantes a lo largo de las barrancas del río Negro y de los bajos mayores. Estos paleocanales se hallan rellenos por sedimentos que han sido denominados Depósitos aluviales antiguos.

Estos depósitos exceden los límites de la Hoja, hacia el oeste fueron descriptos dentro de los Depósitos de la Antigua Planicie Aluvial Disectada (Hugo y Leanza, 2001a) mientras que hacia el este constiuyen el Nivel I de los Depósitos aluviales antiguos (Etcheverría *et al.*, 2009). Están compuestos por sedimentitas que por sectores aparecen de forma inconsolidada, de color castaño claro a gris, cuyo tamaño de grano dominante varía entre arena mediana y guija, con menores proporciones de arena fina, limo y grava. Se disponen en los fondos de los paleocanales y están cubiertos por sedimentos cólicos finos y coluviales.

Por su estrecha relación de yacencia con los Depósitos fluviales gruesos, se sugiere para esta unidad una edad pleistocena.

Depósitos aluviales antiguos del río Negro (5a, 5b, 5c, 5d, 5e, 5f, 5g)

Areniscas, conglomerados y limolitas

El río Negro nace de la confluencia de los ríos Neuquén y Limay, atraviesa la región con dirección noroeste-sudeste, y junto con el río Colorado son los colectores principales de la comarca. El sector abarcado por esta Hoja incluye parte de su valle medio e inferior. A lo largo de su historia ha generado, a diferentes cotas, un gran número de niveles de terrazas que acompañan su recorrido. En esta Hoja se han diferenciado siete niveles antiguos con diferente grado de preservación y de continuidad lateral, un nivel más moderno y el aluvio actual. Estos dos últimos serán tratados en el siguiente apartado.

En cuanto a los niveles antiguos, los más extensos y mejor conservados se hallan en la margen sur del valle (Fig. 7 a) mientras que en la margen norte sólo se registran pequeños relictos. Esto es debido al desplazamiento lateral del río a lo que se suma, en...
menor medida, procesos de remoción en masa como consecuencia de la infiltración de aguas meteóricas.

Debido a la abundante cubierta cuaternaria no hay buenas exposiciones de los sedimentos que compone estas terrazas. Sin embargo, se pudo observar en un tajamar y una cañada, ubicadas al este de la intersección de la ruta nacional 250 con el canal Pomona-San Antonio Oeste, y en un corte de la ruta provincial 4, a la altura de la central hidroeléctrica Ing. G. Céspedes, que los niveles de la margen sur están integrados por areniscas rosadas y grises, medianas a gruesas, conglomerados polimétricos y, en forma subordinada, pelitas. También se determinaron rasgos que permiten interpretar la presencia de incipientes paleosuelos (Fig. 7 b). Estas sedimentitas, en su conjunto, están ordenadas en bancos alternantes, amalgamados o lenticulares. Algunas areniscas, debido a la avanzada bioturbación que presentan, no muestran estructura interna, en tanto que otras tienen estratificación entrecruzada, paralela y planar. Los conglomerados son clasto sostén, tienen clastos imbricados y matriz arenosa, por lo general se hallan en parte cementados por calcita y es común que tengan una gruesa estratificación.

Las terrazas relícticas de la margen norte están compuestas principalmente por conglomerados y en menor medida por areniscas grises (Fig. 7 c). Los primeros son clasto-sostén, con un 30 % de matriz arenosa gruesa y en parte cementados por carbonato de calcio. Los clastos están imbricados, son de hasta 15 cm, proladados, bien redondeados y entre ellos predominan las volcanitas, el cuarzo y las sedimentitas, indicando un aporte de las Andes, en coincidencia con el actual. Las areniscas suelen presentar clastos dispersos y estratificación entrecruzada.

Aguas arriba del río Negro, Hugo y Leanza (2001a) hallaron siete niveles de terrazas, mientras que en el río Neuquén se han reconocido ocho niveles (Ardolino y Franchi, 1996; Rodríguez et al., 2007) y en el río Limay cinco (Leanza y Hugo, 1997; Hugo y Leanza, 2001b). Todos ellos se han generado en forma concomitante con la evolución de sus valles y ponen de manifiesto que los ríos que integran esta cuenca hídrica han sido afectados en sus condiciones de equilibrio, marcando una continua profundización del piso de los valles. Este desequilibrio podría estar relacionado con eventos climáticos regionales. Fauqué (1996) propuso que las terrazas del río Neuquén responderían a cambios climáticos debidos a los diferentes periodos de englazamiento que sufrieron las cabeceras de la cuenca durante el Pleistoceno. Según este autor, estas variaciones en el clima habrían afectado la carga y la descarga del río, generando períodos en los que prevalecía la erosión lateral, el ensanchamiento del valle y la agradación, y otros, en los que se favorecía la profundización del valle en el lecho del río, dando lugar a los diferentes niveles de terrazas. Siame et al. (1997 a y b) y Siame (1998) realizaron estudios y dataron, por el método de nucleidos cosmológicos (10Be), la edad de exposición de superficies de erosión y agradación de abanicos aluviales pleistocenos afectados por la tectónica activa de la falla El Tigre (provincia de San Juan). Cuando compararon las edades obtenidas con los estadios isotópicos de δ18O comprobaron que los períodos de agradación coinciden con estadios interglaciares, por lo que concluyeron que esos niveles eran producto de eventos paleoclimáticos mayores que la respuesta a un factor de cambio de nivel de base asociado a eventos tectónicos. Si bien esta investigación se efectuó sobre abanicos aluviales de la provincia de San Juan, vale la pena mencionarlo ya que comprueba la importancia que juega el factor paleoclimático. Sobre la base de estos datos, estas terrazas serían la respuesta a procesos paleoclimáticos regionales.

En cuanto a su antigüedad, las relaciones estratigráficas y su grado de preservación hacen suponer que estos depósitos aluviales del río Negro tienen edad pleistocena.

2.3.2. PLEISTOCENO-HOLOCENO

Depósitos eólicos (6)

Arenas medianas y finas

Los depósitos eólicos tienen amplia distribución en el área de trabajo y se los puede observar formando un delgado manto o pequeñas dunas que cubren a los Depósitos fluviales gruesos, al Calcrete, a los Depósitos aluviales antiguos, a los Depósitos aluviales antiguos del río Negro y, por último a los sedimentos que constituyen la planicie aluvial actual del río Negro. El contacto, siempre mediante discordancia erosiva, es visible en canteras y en las barrancas del río Negro y de los principales bajos.

Los depósitos eólicos de tipo mantiforme se hallan coronando la meseta, tienen espesores que varían entre 30 y 80 cm, son bastante homogéneos, sin estratificación, de granulometría fina y suelen presentar abundante carbonato de calcio pulverulento y pequeños clastos oscuros diseminados, redondeados, de hasta 0,3 centímetros.
Mediante la realización de estudios granulométricos, se determinó que existen variaciones de oeste a este. La zona occidental es unimodal, con moda en arena fina de hasta 30% (Fig. 8a), la zona central es bimodal con moda principal en arena fina (hasta 24%) y moda secundaria en limo de hasta un 20% (Fig. 8b), en tanto que la zona oriental tiene moda principal en limo (hasta 33%) y moda secundaria en arena mediana, hasta un 18% (Fig. 8c). La fracción más gruesa disminuye gradualmente hacia el este, mientras que el porcentaje de arena fina disminuye en esa dirección inversamente proporcional al aumento de limo. En todos los casos los depósitos están pobremente seleccionados y de bastante asimétricos a negativos. La curtosis calculada permite clasificar diseños mesocúrticos para la zona oeste, mientras que hacia el este varían a platicúrticos.

Se determinaron, además, las composiciones mediante preparados a grano suelto sobre la fracción arena muy fina. En general, se trata de sedimentos en los que predominan el feldespato, con valores entre 54 y 61%, seguido por minerales opacos (entre 7 y 13%), vidrio (6 a 13%), fragmentos volcánicos (6 a 12%) y cuarzo (6 a 10%). En forma subordinada contienen augita (hasta 4%), hipersteno (hasta 5%) y homblesnda (hasta 2%). Los contenidos de cuarzo y de feldespato tienden a aumentar hacia el este, hasta un 4%, mientras que los de vidrio, minerales opacos y fragmentos volcánicos se mantienen aproximadamente constantes.

Estos sedimentos eólicos fueron clasificados, siguiendo el diagrama triangular propuesto por Bidart (1992), como arenas limoarcillosas eólicas que gradan hacia el este a arenas limosas eólicas.

Los depósitos eólicos que forman dunas se ubican principalmente en las zonas deprimidas, a excepción de un campo de dunas ubicado al oeste de la localidad de Lamarque y que se extiende más allá del límite occidental de esta Hoja. Forma una faja de orientación suroeste-nordeste que cubre parte de la meseta y de las terrazas pleistocenas del río Negro. En general, las dunas tienen alturas que oscilan entre 1 y 3 m, están compuestas por arenas medianas a finas y en su mayoría poseen cobertura vegetal.

Se realizaron análisis granulométricos y composicionales sobre muestras provenientes de este campo de dunas (Fig. 9) y se determinó que este depósito tiene un diseño unimodal, con moda en arena media y fina. Son arenas moderadamente seleccionadas, con cola de finos a juzgar por su asimetría positiva. La curtosis calculada permite clasificar sus diseños como muy leptocúrticos, lo que da indicios de que la moda arena fina a muy fina está mejor seleccionada que las granulometrías de limo-arcillas y arenas gruesas. Mineralógicamente, están compuestas por feldespato (62%), cuarzo (11%), minerales opacos (9%), vidrio volcánico (7%) y fragmentos de rocas volcánicas (5%). En forma subordinada (menos del 4%) se observaron hipersteno, augita y homblesnda.

Sobre la base del análisis composicional se determinó que el aporte principal de todos los depósitos eólicos analizados en la Hoja es volcaniclástico, con proporciones variables de material piroclástico, en forma similar al de los depósitos pampeanos (Frenguelli, 1925 y Teruggi, 1957).

Las arenas de dunas se habrían originado por la acción de vientos provenientes del oeste.
Figura 9. Histograma, curva acumulativa y diagrama composicional de una muestra representativa del campo de dunas.

Las arenas en forma de manto se habrían producido por depósito de material transportado en suspensión aérea. La presencia de pequeños clastos diseminados se interpreta como producto de la bioturbación o bien de la deflación de las rocas locales. La pobre selección, tal como postularon Iriondo y Kröhling (1996) para los sedimentos eólicos de la llanura pampeana, se debería a turbulencias en el régimen eólico.

Las muestras aquí analizadas fueron comparadas composicional y texturalmente con otras provienen de zonas más orientales (Etcheverría et al., 2005, 2006, 2009) y se concluyó que las proporciones mineralógicas de la fracción arena son similares, mientras que granulométricamente son más gruesas ya que tienen mayor proporción de arena que aquellas con las que se las compara y que fueron clasificadas como loess arenoso y loess arcillo-so. Esto implica que se mantiene la tendencia de disminución granulométrica hacia el este que fuera observada por Zárate y Blasi (1993) para el área de Necochea y sudoeste de Mar del Plata, y por Etcheverría et al. (2005, 2006 y 2009) para el sector oriental de la provincia de Río Negro y para el sur de la provincia de Buenos Aires.

Para el loess de la zona pampeana, Teruggi (1957) sugirió que se habría originado por la deposición de partículas, trasladadas en suspensión en la alta atmósfera, que procedían del piedemonte andino. Zárate y Blasi (1993) propusieron, para el suroeste de la provincia de Buenos Aires, que desde el Pleistoceno tardío el aporte principal del loess provino, durante las épocas secas, de la deflación de los sedimentos aluviales de los ríos Colorado y Negro, con vientos predominantes del oeste. Etcheverría et al. (2005) caracterizaron textural y mineralógicamente a sedimentos eólicos similares ubicados inmediatamente al suroeste de la región aquí estudiada, indicaron una proveniencia de los Andes Norpatagónicos y norte de Patagonia Extraandina, propusieron que la dirección preferencial de los vientos que transportaron el material fue de suroeste a nordeste y que la planicie aluvial del río Negro habría aportado, al norte de este río, abundante material fino. En el presente trabajo, si bien no se hicieron análisis de procedencia y sólo se analizó composicionalmente la fracción arena muy fina, se considera que el modelo propuesto por Zárate y Blasi (1993), además de ser coherente con lo observado por Etcheverría et al. (2005, 2006, 2009), también coincide con las apreciaciones hechas en el sector comprendido por esta Hoja. Las arenas del tipo mantiforme sobreyacentes a depósitos de edad pleistocena y se correlacionan con los Depósitos eólicos finos (Etcheverría et al., 2009) y con los Depósitos loésicos (Etcheverría et al., 2006) ubicados más al este, por lo que se les asigna una edad pleistoceno-holocena. Si bien podrían ser depósitos resedimentados, se estima que quizás su última redeposición, en esta región, fue durante el Último Máximo Glacial (Estadio isotópico 2). Las arenas que conforman dunas serían contemporáneas con las anteriores.

2.3.3. HOLOCENO

Depósitos aluviales modernos del río Negro (7a, 7b)

Arenas, limos, arcillas y gravas

Esta unidad está compuesta por los sedimentos que componen la terraza más moderna (Nivel 1) y el aluvio actual del río Negro.
La primera se extiende con un ancho variable a lo largo del valle y se encuentra adosada a sus laterales en forma alternante. La integran, además la isla Choele Choel Grande y la zona comprendida entre los brazos norte y sur del río Negro, área en la que se asientan las localidades de Luis Beltrán y Lamarque y la mayoría de los establecimientos frutícolas de la región. En este nivel se pueden reconocer paleocanales y sobre él abundan los depósitos eólicos y los peladares (Fig. 10a). Estos últimos suelen ser salitrosos y en ellos es común que las eflorescencias de cloruro y sulfato de sodio lleguen a formar costras, especialmente después de lluvias o por riego excesivo.

En un cañadón ubicado al noroeste de la localidad de Choele Choel, se pudo constatar que estos depósitos están compuestos por gravas, arenas y limos (Fig. 10b). Las primeras, a manera de conglomerados, son clastosostenidas, sus clastos son redondeados, con tamaños que oscilan entre 1 y 8 cm y están integrados por volcanitas (andesitas y basalts), cuarzo, granito, calcrete y sedimentitas, muchas de las cuales pertenecen a la Formación Río Negro, estos últimos alcanzan 25 cm y son los de mayor tamaño; la matriz es una arena gruesa. Suelen ser lenticulares, tener estructuras de canales y estratificación entrecruzada. Entre estos depósitos gruesos se intercalan lentes arenosos de hasta medio metro de espesor, con estratificación entrecruzada de bajo ángulo, lentes limo-arcillosos con laminación paralela y escasos bancos matriz sostenidos con clastos mayormente pelíticos, que corresponden a depósitos de flujos.

Este nivel de terraza se habría originado en el Holoceno, como respuesta a variaciones climáticas en la región, como ya se explicó previamente.

El aluvio actual tiene un importante desarrollo en todo el valle, forma la planicie aluvial actual y acompaña el recorrido del río, quien sigue un curso tortuoso, acercándose a una u otra de las barrancas. En ocasiones consta de un cauce único y en otras por varios brazos que limitan islas.

Sus depósitos están formados por gravas a manera de conglomerados clasto sostén y matriz sostén y arenas con limos y arcillas subordinadas. En líneas generales la planicie aluvial actual tiene una apariencia suavemente ondulada debido a la presencia de depósitos eólicos y de meandros activos y abandonados con sus albardones asociados. Existen varias generaciones de meandros que han dejado sucesiones de albardones y canales y depósitos finos de pantanos y de lagunas transitorias.

Depósitos evaporíticos (8)

Arcillas, sales

Los depósitos evaporíticos ocupan el fondo del bajo Las Golondrinas (Fig. 11) y de aquel sin nombre ubicado al sudeste de la Hoja (donde se localiza el puesto El 21). Salitrales de mucha menor magnitud se hallan dispersos por toda la región y son similares, en dimensiones, a los del bajo Hondo y a los innominados que se ubican al este de la isla Choele Choel Chica y al sureste de Choele Choel.

Están compuestos por arcillas de coloraciones blanquecinas y rosadas con variables contenidos de sales. Estas últimas forman costras de color blanco o rosado y se habrían generado a partir de los aportes de iones de aguas superficiales y profundas. Además, su concentración se vio favorecida por las condiciones climáticas que reinan en esta

Figura 10. a. Vista panorámica de un peladar situado sobre el Nivel 1; b. Depósitos aluviales del Nivel 1 expuestos en un cañadón, al noroeste de la localidad de Choele Choel.
región. Se desconoce la composición química de estas sales.

Depósitos aluviales finos (9)

Limos y arcillas

En la región existen gran cantidad de pequeños bajos y lagunas temporarias (Fig. 12) tales como las lagunas La Seca, Dulce y San Bernardo. En estas depresiones se depositan sedimentos muy finos (limos, limoarcillas y arcillas) de color castaño claro. En algunos casos estos depósitos se mezclan hacia las márgenes con depósitos de coluvio, provenientes de los laterales del bajo, y con arenas eólicas.

Depósitos aluviales y coluviales indiferenciados (10)

Arenas, gravas y limos

Estos depósitos están ampliamente distribuidos y se desarrollan en las zonas deprimidas y al pie de las barrancas que marginan a los bajos mayores y a la planicie aluvial del río Negro. Son depósitos inconsolidados de color castaño claro a gris. El tamaño de grano varía entre arena mediana a guija, con diferentes proporciones de grava, arena fina y limo. Su generación es actual.

3. ESTRUCTURA

En la Hoja Geológica 3966-IV el basamento está caracterizado por ser muy heterogéneo. Si se toma la división de terrenos tectonoestratigráficos de Chernicoff y Zappettini (2004) el área involucrada abarcaría las porciones australes de los terrenos Cuyania, Pampia y cráton del Río de la Plata, y la porción norte de Patagonia (Fig. 13).

La región está ubicada en un sector de transición entre dos provincias geológicas, ya que se sitúa inmediatamente al este del límite oriental del Engolamiento Neuquino y al occidente de la Cuenca del Colorado (Ramos, 1999). Recientemente, Kostadinoff et al. (2005), mediante datos obtenidos de relevamientos magnetométricos y gravimétricos realizados entre los ríos Negro y Colorado, lograron establecer el límite oriental de la Cuenca Neuquina, ubicándolo en cercanías de la localidad de Chimpay.
en lo que denominaron alto de Choele Choel. Por otro lado, Casadio et al. (1999, 2000, 2002), mediante el hallazgo de sedimentitas cretácicas continentales aflorantes dentro de la provincia de La Pampa, redefinieron el límite occidental de la Cuenca del Colorado y lo extendieron hasta el meridiano 64°30’O.

La zona de trabajo es bastante complicada para el análisis de las características estructurales. Los afloramientos de sedimentitas cenozoicas aparecen en forma aislada ya que están semicubiertos por abundantes depósitos cuaternarios y vegetación. Estas secuencias aparentan estar dispuestas en paquetes subhorizontales y no hay evidencias superficiales de deformación.

Por este motivo, las investigaciones tendientes a mejorar el conocimiento del área son escasas, y en cuanto al subsuelo, se desconoce con exactitud la relación entre las cuencas Neuquina y del Colorado.

El engolfamiento Neuquino ha sido muy estudiado debido a que es una de las cuencas más prolíficas en cuanto a producción de hidrocarburos de la Argentina (Groebel, 1929; Suero, 1939, 1951; Herrero Ducloux, 1946). Esta cuenca se desarrolló durante los tiempos mesozoicos y cenozoicos y fue dada como de retroarco situada al este de la Cordillera Principal Neuquina. Su límite sudoriental está definido por el terreno Patagonia (Ramos 2004 a y b; Mosquera y Ramos, 2006), mientras que hacia el este, según Kostadinoff et al. (2005) podría extenderse hasta Chimpay, inmediatamente al oeste del área de trabajo, donde, se ha determinado una disminución apreciable en el espesor de las unidades.

que la componen (Kostadinoff y Llambías, 2002). Mosquera y Ramos (2005) relacionaron los principales eventos en la evolución tectónica de esta cuenca con cambios en los vectores de convergencia entre las placas Pacifica y Gondwana - Sudamérica durante el Mesozoico y Cenozoico.

El conocimiento de la Cuenca del Colorado se obtuvo debido a la prospección, para la obtención de hidrocarburos, realizada por Union Texas Argentina Limited, YPF y SHELL CAPSA. De esta manera, el gran número de pozos exploratorios de hidrocarburos y de agua subterránea, sumados a la gran cantidad de información asociada a la interpretación de datos geofísicos, han permitido interpretar la estratigrafía y estructura del subsuelo, con especial énfasis en el offshor. Tiene una forma elongada en sentido Este-Oeste, las tres cuartas partes de su superficie se hallan sobre la plataforma continental argentina (Zambrano, 1972), mientras que el resto se interna en el ambiente continental. El origen de la cuenca ha sido interpretado como aulacogénico (de Wit, 1977 y Urien y Zambrano 1996). Yrigoyen (1999) lo vinculó a fallamiento extensional, sobre fracturas transcurrentes y/o antiguas zonas de suturas precámbrico-paleozoicas en el basamento, reactiveadas durante la orogenia del océano Atlántico Sur, que tuvo lugar, según Fryklund et al. (1996), en el Jurásico medio a superior.

El rasgo estructural más trascendente del área es la dorsal de Huincul, reconocida por de Ferraris (1947) dentro de la Cuenca Neuquina. Orchuela y Ploszkiewicz (1984) y Ploszkiewicz et al. (1984) la definieron como una estructura transtensional o transpresiva. La continuidad de esta estructura en la provincia de Río Negro ya había sido reconocida por Orchuela y Ploszkiewicz (1984), quienes la denominaron falla Río Negro. Posteriormente, Chernicoff y Zapettini (2004), mediante análisis magnetométricos, determinaron que existe un trancamiento de las facies magnéticas en coincidencia con esta zona. Ramos (2008) consideró que aunque no hay evidencias de la existencia de una faja de ofiolita, la zona de falla de Huincul marcaría la posible suture entre los terrenos Gondwana y Patagonia. Sin embargo, Gregori et al. (2008) no están de acuerdo con este modelo, e indicaron que las anomalías magnéticas y gravitatorias en este supuesto límite son incompatibles con la presencia de una suture. Más recientemente, González et al. (2011), mediante el hallazgo de arqueociátidos fósiles en bloques de calizas contenidas en la Formación El Jagüelito, en el macizo Norpatagónico Oriental, demostraron que el norte de la Patagonia tenía una ubicación próxima a la Antártica oriental durante el Cambro-Ordovicico, lo que finalmente confirma la aloctonía de Patagonia.

Al sur de la falla de Huincul, en el subsuelo del área de trabajo, Kostadinoff et al. (2005) definieron un sector que se caracteriza por mostrar anomalías de gravedad transicionales con la Cuenca Neuquina. Además, hallaron una anomalía magnética, localizada al sur de Choele Choel, producto de la ausencia de rocas básicas y ultrabásicas y el dominio de rocas poco magnéticas, como metamorfitas de bajo grado y rocas ácidas gondwánicas, y la interpretaron como un alto estructural al que denominaron alto Choele Choel-estancia El Caldén ruim general O-E variaba hacia el ESE, formando una estructura leve mente convexa hacia el norte. Estos autores sostuvieron que la falla tiene, en este sector, un comportamiento dextrógira, por lo que la consideraron transpresiva. La continuidad de esta estructura en la provincia de Río Negro ya había sido reconocida por Orchuela y Ploszkiewicz (1984), quienes la denominaron falla Río Negro. Posteriormente, Chernicoff y Zapettini (2004), mediante análisis magnetométricos, determinaron que existe un trancamiento de las facies magnéticas en coincidencia con esta zona. Ramos (2008) consideró que aunque no hay evidencias de la existencia de una faja de ofiolitas, la zona de falla de Huincul marcaría la posible suture entre los terrenos Gondwana y Patagonia. Sin embargo, Gregori et al. (2008) no están de acuerdo con este modelo, e indicaron que las anomalías magnéticas y gravitatorias en este supuesto límite son incompatibles con la presencia de una suture. Más recientemente, González et al. (2011), mediante el hallazgo de arqueociátidos fósiles en bloques de calizas contenidas en la Formación El Jagüelito, en el macizo Norpatagónico Oriental, demostraron que el norte de la Patagonia tenía una ubicación próxima a la Antártica oriental durante el Cambro-Ordovicico, lo que finalmente confirma la aloctonía de Patagonia.

Un rasgo que merece mención es el cambio de rumbo del río Negro desde E-O a NO, en el trayecto ubicado entre la localidad de Darwin y el paraje...
El Solito. Esta desviación del curso, que coincide con la traza del corrimiento Santa Isabel definido en el sector occidental de la provincia de La Pampa, podría estar transparentando la estructura profunda (Folguera y Zárate, 2011).

4. GEOMORFOLOGÍA

El área que abarca la Hoja Choele Choel representa sin duda alguna las características propias de la Patagonia Extraandina más oriental. Se destaca el amplio valle del río Negro marginado por un extenso paisaje mesetiforme en el que se desarrolla una estepa arbustiva de ambiente semiárido.

El paisaje actual fue modelado casi en su totalidad por el accionar del proceso fluvial. En menor grado actuaron el proceso eólico y la remoción en masa. Regionalmente la comarca se puede dividir en dos unidades geomorfológicas bien diferenciadas. La primera está constituida por un relieve mesetiforme, conformado por extensas planicies estructurales cubiertas por gravas. La otra unidad comprende la planicie aluvial actual y las terrazas del río Negro (Fig. 14).

4.1. PLANICIE ALUVIAL ACTUAL Y TERRAZAS

El río Negro, alóctono y de régimen permanente, forma parte de la cuenca hídrica más importante del área en estudio y de la región norte del valle de la Patagonia argentina (Fig. 15). Nace de la confluencia de los ríos Limay y Neuquén, al oeste, y drena hacia el este hasta desembocar en el océano Atlántico. Su caudal es muy importante, ya que sus aguas provienen de las precipitaciones pluviales y nivales del sector cordillerano y de la mayoría de las cuencas de los lagos de la provincia del Neuquén.

Desde el punto de vista paisajístico el fondo del valle está constituido por la terraza más moderna y la planicie actual. Ambas se caracterizan por tener una gran cantidad de meandros funcionales (Fig. 16 a y b), albarrones semilunares, pequeños bajos y médanos. En la terraza es común observar salitral. El ancho de ambas unidades alcanza los 10,5 km en las cercanías de la estancia La Victoria.

En los laterales del valle se han diferenciado hasta 8 terrazas, las que evidencian un claro cambio de energía en el sistema hídrico del río Negro desde el Pleistoceno. Todas ellas se encuentran en forma continua en la ladera sur y en general presentan un relieve llano con una suave pendiente regional hacia el este, están muy bien preservadas y poco disectadas y es posible aún reconocer gran cantidad de paleocanales.

La terraza más antigua (nivel 1), se extiende desde las cercanías de la estancia San Ignacio, con una cota de 158 m s.n.m., hasta fuera del límite sur de la Hoja, donde su cota es de 151 m sobre el nivel del mar.

La terraza del nivel 2 se encuentra en ambas márgenes del río, en la margen sur está bien preservada a lo largo de todo el valle, la cota varía entre 198 (al oeste) y 138 (al este) m s.n.m., mientras que en la margen norte, al oeste de la localidad de Darwin, de este nivel sólo se conserva un pequeño relictio muy degradado.

La terraza siguiente (nivel 3) se localiza a lo largo de todo el suroeste del valle, conformando una franja estrecha y alargada, con cotas que varían entre 185 y 139 m sobre el nivel del mar.

El nivel 4 al sur del valle posee una superficie muy similar al anterior, con una cota que varía entre 180 y 132 m sobre el nivel del mar. Está disectado por arroyos temporarios, que por erosión retrocedente generaron carpavamiento. Esto se puede observar al este de la intersección entre la ruta nacional 250 y el canal Pomona-San Antonio Oeste.

El nivel 5 es el de menor superficie y se encuentra bastante disectado, aflora al sur del valle y su cota varía entre 173 y 113 m sobre el nivel del mar.

El nivel 6 es el de mayor superficie, se localiza en ambas márgenes del río y alcanza un ancho máximo de 10 kilómetros. Este nivel preserva paleocanales muy extensos, como el que se encuentra en la margen norte del valle, en las cercanías de las estancias Negro Muerto y Bardas Blancas. Las cotas varían entre 166 y 99 m sobre el nivel del mar.
La terraza del nivel 7 tiene características geomorfológicas diferentes a las más antiguas, en ella no se observan los paleocauces tan bien preservados, porque está cubierta por depósitos eólicos e importante vegetación, se considera que podría tener edad holocena, mientras que las anteriores podrían ser pleistocenas. Su diferencia de cota con la anterior alcanza 17 m, siendo éste el mayor desnivel
Figura 15. Brazo norte del cauce del río Negro, frente a la ciudad de Choel Choel.

Figura 16. a. Meandro afuncional de la terraza más moderna en la estancia La Victoria; b. Vista panorámica del valle del río Negro donde se observa la planicie aluvial actual, un meandro del río y la terraza más moderna.

Figura 17. Vista hacia el este de la ruta nacional 250, en ella se observan un paleocanal de la terraza del nivel 6 y las terrazas del nivel 4 y 5.
observado entre las ocho terrazas detectadas. Otros relictos de este nivel afloran al este de la localidad de Darwin.

4.2. PAISAJES LABRADOS EN SEDIMENTITAS NEÓGENAS

La erosión hídrica, favorecida por las características litológicas y estructurales de las sedimentitas neógenas, fue el principal agente generador de este paisaje. Esta unidad geomorfológica no abarca grandes superficies, se extiende a lo largo de toda la margen norte del valle del río Negro, y al sur de éste, en cercanías de la loma Negra, como así también en algunos bajos, como los de Las Golondrinas y Honda, entre otros.

En líneas generales este paisaje está conformado por una superficie sumamente ondulada e irregular, con lomadas de formas redondeadas y cañadones (Fig. 18 a), típicas de *badlands*, por una escarpa de erosión generada a expensas de la pedimentación (pedimentos de flancos Fig. 18 b) de la Formación Río Negro y por una bajada, constituida por conos aluviales y coluviales, que llega al fondo del valle.

Los pedimentos de flanco se ubican en la parte más alta de los laterales del valle y los mejores ejemplos se hallan en cercanías de la ciudad de Choele Choel. Inclinan en dirección al río Negro con pendientes que varían entre 3° y 7°.

4.3. PLANICIE ESTRUCTURAL CON CUBIERTA DE GRAVAS

Desde el punto de vista paisajístico, la Patagonia Extraandina se caracteriza por tener extensas planicies estructurales con cubierta de gravas, conocidas en la literatura geológica bajo la denominación de «Rodados Patagónicos» o «Rodados Tehuelches». La génesis de estos depósitos aún hoy sigue siendo motivo de controvertidas opiniones.

Estas planicies son el producto de la coalescencia de abanicos aluviales distales producidos por sucesivos episodios de agradación pedemontana, vinculados con la dinámica andina, a partir del Mioceno medio.

En la comarca, esta planicie se extiende por todo el área y es disectada por el río Negro, formando parte de un inmenso relieve mesetiforme que puede ser observado en su magnitud desde el fondo del valle (Fig. 19).

La planicie estructural con cubierta de gravas está formada por depósitos de agradación de forma tabular constituidos fundamentalmente por material psefítico con matriz arenosa y abundante cemento. Es común que, en algunos sectores, en el techo de estos depósitos se encuentre un nivel de calcrete. La dureza de estos depósitos favoreció el desarrollo de este paisaje preservando al conglomerado de la erosión.

Esta planicie tiene una cota máxima de 235 m en el límite occidental de la Hoja, y posee una suave pendiente regional hacia el sureste con valores menores a 1°, su extensión y cota varía regionalmente. Además, se halla cubierta por delgados depósitos eólicos en forma de pequeñas dunas que alteran levemente el paisaje. En la actualidad se halla muy disectada por una gran cantidad de paleocanales poco profundos y bajos. Los numerosos paleocanales conforman una red de drenaje con pendiente hacia el Este y diseño anastomosado y es común que formen valles colgantes a lo largo de la escarpa de erosión ubicada en la margen norte del río Negro. En este trabajo sólo se han diferen-

![Figura 18](image-url). a. Cañadón, producto del carcamavamiento en sedimentitas neógenas y holocenas, ubicado al norte de la localidad de Choele Choel; b. Vista panorámica de pedimentos de flanco en sedimentitas neógenas.
ciado los más importantes en cuanto a su extensión y profundidad, sin embargo hay que tener en cuenta que esta red de drenaje abarcó prácticamente toda el área.

4.4. GEOFORMAS DERIVADAS DEL PROCESO EÓLICO

Los vientos, en esta región patagónica, son un agente modelador muy importante. En general, tienen una dirección predominante de oeste a este y generan dunas que se hallan por toda la comarca, tanto en el valle como en la meseta.

Al oeste de la localidad de Lamarque se puede observar un importante campo eólico de aproximadamente 200 km², formado por dunas longitudinales con orientación preferencial sudoeste-nordeste que no superan los 3 m de altura.

Bajos

En la comarca existe una gran cantidad de bajos, sus formas y profundidades son variables y, en general, en planta son elípticos e irregulares. Todos presentan una red de drenaje endorreica con colectores efímeros y en sus partes más profundas contienen barrales, salitras o lagunas que desaparecen en las épocas secas. Se puede observar también que la mayoría están asociados con los paleocanales. Los más destacados son los bajos Las Golondrinas, con una superficie de 90 km² y 80 m de profundidad (Fig. 20) y el del puesto El 21, de 130 km² y 75 m de profundidad.
Su origen es discutido, Frenguelli (1957) lo atribuyó a un rasgo tectónico y los consideró posteriormente ampliados por deflación. Panza (1995) propuso que se habrían iniciado por procesos de piping y que luego se habrían profundizado y ensanchado aún más por la acción conjunta del agua pluvial, meteorización física y química, la acción fluvial y una importante deflación.

En este trabajo se considera un origen multigenético, donde la deflación habría sido el principal proceso, con la participación de erosión hídrica y de remoción en masa, que habrían favorecido la meteorización y desagregación de las sedimentitas neogénicas de la Formación Río Negro.

4.5. GEOFORMAS DERIVADAS DE PROCESOS DE REMOCIÓN EN MASA

En el ámbito de la Hoja los deslizamientos son las principales geoformas derivadas de los procesos de remoción de masa. Predominan a lo largo de todos los resaltos que se localizan entre las depresiones (valles y bajos) y la planicie estructural con cubierta de gravas. Éstos son del tipo rotacional y se encuentran sumamente degradados y disectados por la acción fluvial.

5. SUELOS

La Hoja Geológica Choele Choel se caracteriza por estar formada en gran parte por un relieve con escasos desniveles que ha sido propicio para la generación de suelos. Es por ello que se hará una breve referencia acerca de los mismos, resumiendo la información que brinda el Atlas de Suelos de la República Argentina a escala 1:500.000 (Moscatelli, 1990) y teniendo en cuenta la actualización taxonómica realizada por el Departamento de Agricultura de los Estados Unidos (USDA, 2006). Para mayores detalles se sugiere remitirse a dichas publicaciones.

En el Atlas mencionado se definen para la zona de estudio dos dominios edáficos formados por los Órdenes Aridisol y Entisol, dentro de los cuales predominan determinados subórdenes.

El uso actual del suelo es el pastoreo de ganado ovino y bovino y en mucha menor medida la agricultura, que se haya restringido a la zona del valle del río Negro.

5.1. ARIDISOLES

Estos suelos son los más extendidos de la Hoja (Fig. 21). Dentro de este Órden existen los Subórdenes Argides, Calcides y Cambides, en ellos se han reconocido diferentes Subgrupos, como se detalla a continuación.

Argides

Haplargides arénicos

Se extienden en las zonas deprimidas de la antigua planicie aluvial. Han evolucionado a partir de materiales aluviales arenosos finos y limosos. Son suelos fuertemente desarrollados, con buen drenaje y carencia de alcalinidad y salinidad. El horizonte superficial, de 22 cm de espesor, no presenta materia orgánica y la textura es arenosa. El horizonte Bt tiene textura franco arenosa y está ligeramente estructurado. A los 40 cm de profundidad existe un horizonte B3ca de textura franco arenosa con abundante carbonato de calcio en la masa y en forma de concreciones. Éstos suelos en general poseen buen drenaje, son susceptibles a la erosión cólica y aptos para el pastoreo de ganado.

Natargides típicos

Se extienden en las planicies interfluviales de la antigua planicie aluvial. Son suelos generados a partir de material de textura franco. Están bien desarrollados, bien drenados y tienen alcalinidad y salinidad. El horizonte superficial está desprovisto de materia orgánica, es de textura franco arenosa y tiene abundante carbonato de calcio en la masa. El horizonte Bt es nátrico, con textura franco arcillosa, signos de iluviación, muy bien estructurado y suele presentar gravilla fina. A partir de los 52 cm de profundidad se encuentra material franco arenoso con abundante carbonato de calcio en la masa. Es usual hallar un horizonte petrocálico en profundidad. El uso de este suelo está restringido al pastoreo de ganado.

Petroargides típicos

Ocupan las planicies aluviales antiguas que se ubican en la zona occidental, al norte y sur del río Negro. Son suelos con fuerte desarrollo, bien drenados, con abundante pedregosidad y que no presentan alcalinidad ni salinidad. El horizonte superficial, de 9 cm de espesor, no tiene materia orgánica y su textura es franco arenosa. El horizonte Bt es arcilloso y está fuertemente estructurado. A los 36 cm de profundidad se encuentra el horizonte petrocálico. Este suelo es utilizado para pastoreo.
Calcides

Haplocalcides típicos

Abarcan las antiguas terrazas del río Negro. Estos suelos se han desarrollado a partir de arenas finas y gruesas, son excesivamente drenados y no presentan alcalinidad ni salinidad. El horizonte superficial, de 16 cm de espesor, no contiene materia orgánica, es de textura arenosa franca y posee escasas concreciones de calcio. Los horizontes AC y C son de textura arenosa franca y tienen carbonato de calcio pulverulento y en concreciones. Estos suelos tienen severa deficiencia hídrica y son susceptibles a la erosión eólica e hídrica. Su principal uso es el pastoreo de ganado.

Cambides

Haplocambides liticos

Se los encuentra en el occidente de la planicie aluvial antigua, al sur del río Negro, abarcando un sector en el que prevalecen las acumulaciones eólicas. Son suelos someros, con débil desarrollo, excesivamente drenados y carecen de salinidad y alcalinidad. El horizonte A, de 26 cm de espesor, es de textura franco arenosa, y no contiene materia orgánica. El horizonte Bw, de 13 cm, tiene textura franco arenosa y el BC presenta abundante carbonato de calcio y textura arenosa franca. El uso de este tipo de suelos se restringe al pastoreo de la vegetación natural.

5.2. ENTISOLES

Estos suelos se hallan restringidos al valle del río Negro (véase figura 21). Dentro de este Orden existen dos Subórdenes (Ortentes y Fluventes) y a su vez dentro de cada uno de éstos hay un Subgrupo.

Ortentes

Torriortentes liticos

Se extienden como una franja en el sector norte del valle del río Negro. Son suelos excesivamente...
drenados y con muy escaso desarrollo pedogenético. El horizonte A está prácticamente desprovisto de materia orgánica y es de textura areno franca. El horizonte AC es también areno franco y se interrumpe por la presencia de roca. Se los destina para pastoreo.

Fluventes

Torrifluventes típicos

Ocupan la planicie aluvial del río Negro. Son suelos con mal drenaje, salinos y alcalinos. El horizonte superficial es de 12 cm de espesor, presenta bajo contenido en materia orgánica, su textura es arcillo limosa y contiene carbonato de calcio en forma pulverulenta. En profundidad aparecen capas de origen fluvial. Estos suelos se destinan al pastoreo.

6. HISTORIA GEOLÓGICA

La Cuenca Neuquina, de edad mesozoica, es considerada como de retroarco y está situada al este de la Cordillera Principal Neuquina. La acumulación sedimentaria habría comenzado promediando el Triásico (Legarreta y Uliana, 1999) y su evolución estuvo vinculada con los cambios en los vectores de las placas subducidas (Mosquera y Ramos, 2006).

La Cuenca del Colorado se originó como un brazo de *rift* abortado (cuenca aulacogénica) durante la apertura del océano Atlántico y su relleno abarcó desde el Jurásico superior hasta el Neógeno (Yrigoyen, 1999).

Durante el Maastrichtiano, el mar Atlántico inundó la Cuenca Neuquina (Legarreta y Uliana, 1999), produciéndose la ingresión, en esta latitud, por la Cuenca del Colorado (Barrio, 1991). Luego de una continentalización con erosión se generó una nueva ingresión marina, la Paranense (Mioceno medio a tardío, Malumíán et al., 1998) que habría invadido el continente aprovechando el flexuramiento tectónico en los Andes y un nivel eustático alto (Ramos y Alonso, 1995).

7. RECURSOS MINERALES

Los antecedentes bibliográficos y catastrales de esta Hoja indican que los recursos minerales sólo comprenden la existencia de áridos (canteras e indi-
Geológicamente, los depósitos de áridos están ubicados, de acuerdo con la terminología propuesta en el capítulo Estratigrafía, en los litotectos denominados Depósitos fluviales gruesos, Depósitos aluviales antiguos y Depósitos aluviales antiguos y modernos del río Negro.

El área que abarca la Hoja se encuentra comunicada con las diferentes regiones y localidades de la provincia y del país a través de rutas nacionales, provinciales primarias, secundarias y urbanas. Es precisamente a la vera de las mismas donde se ubican las principales canteras que abastecen de los materiales mencionados a la región. También se registran explotaciones de arenas y gravas en el valle del río Negro.

Al norte, una de las principales vías de comunicación en la Hoja es la ruta nacional 22 (Bahía Blanca-Neuquén). Por ella se transporta la mayor parte de los productos minerales de la región; su trazado está delineado sobre la planicie estructural con cubierta de gravas, constituida en su parte superior por el denominado comercialmente «ripio calcáreo» o «calcáreo» (conglomerado polimíctico, mediano a grueso, con clastos finos subordinados, matriz arenosa y presencia de material calcáreo). Este material se utiliza fundamentalmente para la construcción y mantenimiento de banquinas; se extrae de canteras ubicadas a la vera de la ruta, a la fecha paralizadas. Las que eventualmente están en actividad pertenecen a los municipios locales que utilizan sus materiales para obra pública urbana.

Al sur, la ruta nacional 250 vincula las localidades de la Hoja con la ruta nacional 251 (San Antonio Oeste-Colorado) y las provinciales 4 (Valcheta-Choele Choel) y 2 (San Antonio Oeste-Choele Choel). Todas ellas tienen un constante tránsito de vehículos pesados por lo que necesitan un mantenimiento permanente. A la fecha, en el paraje El Solito (cruce de las rutas 250 y 2), se encuentra en actividad una importante cantera cuyo material se utiliza para la reparación y reconstrucción de las rutas provinciales citadas precedentemente (tramo El Solito-Pomona).

En la ruta provincial 4 también existen varias canteras utilizadas con los mismos fines que los citados anteriormente, pero todas ellas se encuentran inactivas.

Otra ruta es la provincial 56, enripiada, que une Choele Choel con Fortín Uno (límite con la provincia de La Pampa). Tiene canteras en actividad de «ripio calcáreo» y de conglomerados a 2 km al norte de Darwin. El material es explotado por la empresa Arideros SRL de la localidad de Luis Beltrán y vendido a la empresa Shap Río Colorado para su planta de elaboración de pretensados hormigonados.

Hacia el norte de la ruta provincial 56, también se localizan canteras con explotaciones esporádicas realizadas por la Municipalidad de Darwin para el mantenimiento de caminos secundarios y de huellas por las que se accede a los establecimientos rurales.

La ruta provincial 53 comunica el valle medio del río Negro con la localidad de General Conesa. Es una zona transitada por productores que poseen establecimientos ganaderos y frutí-hortícolas en esta dilatada planicie aluvial y sobre el valle del río Negro. Se pueden observar canteras abandonadas y otras con explotaciones intermitentes, éstas últimas utilizadas por las municipalidades de Lamarque y Choele Choel para el mantenimiento de accesos y huellas.

No se conocen datos sobre la existencia de minerales metalíferos.

7.1. DEPÓSITOS DE MINERALES INDUSTRIALES

Áridos

El recurso árido es muy abundante, especialmente en el área de influencia del río Negro, en ambas márgenes del curso actual.

Depósitos fluviales gruesos

Se trata de conglomerados polimícticos, medianos a gruesos, con clastos finos subordinados, matriz arenosa y presencia de material calcáreo. Comercialmente este material se conoce en la zona como «ripio calcáreo» o «calcáreo».

Las localidades consumidoras de este material (Choele Choel, Darwin, Luis Beltrán, Lamarque y Pomona) se encuentran en el amplio valle del río Negro. Las canteras se ubican principalmente en cercanías de los centros poblados y a los costados de las rutas nacionales y provinciales.

- Cantera El Solito

Esta cantera, a la fecha activa, se halla en el cruce de las rutas nacional 250 y provincial 2, en el paraje conocido como El Solito, distante 75 km de Choele Choel y 125 km de General Conesa. La explota la empresa Luciano SA., que ha montado un
campamento, talleres, una planta de trituración y zarandas clasificadoras, entre otras mejoras, que le permiten una producción de 90 m³/día de piedra triturada y la selección de tres tamaños de gravas y de arena mediana.

El depósito es un conglomerado con clastos de diferentes tamaños (desde bloques a gravas) de rocas volcánicas de diferente composición (andesítica, riolítica, dacítica, entre otros) en matriz arenosa mediana a fina, y parcialmente cementado por carbonato de calcio (Fig. 22). Presenta una estratificación gruesa en la que pueden observarse diferentes tamaños de rodados y arenas, entremezclados, indicando los pulsos de la fuerza que produjera la remoción, transporte y posterior depositación del material. El espesor del manto es de unos 3 m con leve inclinación (2º a 3º) al oeste.

En los frentes de explotación se puede observar que la parte superior de la secuencia (1 m a 1,5 m, promedio) corresponde al denominado comercialmente «ripio calcáreo» y luego se encuentran entre 3,50 y 4 m de conglomerado.

La superficie de la cantera ocupa varias hectáreas y es trabajada en tres frentes de explotación: un primer frente que interesa al nivel superior de «ripio calcáreo», previa eliminación de la cubierta vegetal y limpieza del sector, y otros dos que están labrados sobre el conglomerado infrayacente. Es precisamente en uno de estos frentes donde se encuentra instalada la planta de trituración y clasificación. Las superficies son de 300 m x 250 m, con 3,50 m promedio de alto (según los desniveles del terreno) y la superficie preparada para la explotación es de 1,7 ha, de la que ya se ha explotado la parte superior.

Depósitos aluviales antiguos del río Negro

En la margen sur del valle del río Negro pueden identificarse hasta siete niveles de terrazas pleistocenas. Su constitución es principalmente arenosa gruesa, con gravas y gravillas subordinadas. Los rodados corresponden principalmente a riolitas, andesitas e ignimbritas, a las que se suman restos de conchillas; están cementados con carbonato de calcio. Las canteras desarrolladas sobre este litotecto se encuentran inactivas.

Depósitos aluviales modernos del río Negro y coluviales

Son depósitos holocenos compuestos por arenas finas a gruesas con algo de gravilla.

Figura 22. a. Cantera El Solito; b. Detalle de la parte superior del conglomerado («ripio calcáreo»); c. Frente de explotación con más detalle.
- Canteras Arideros y Arideros II
Se trata de dos canteras aledañas. Se localizan en el valle aluvial del río Negro en la denominada zona de chacras, prácticamente en el límite jurisdiccional de las municipalidades de Choele Choel y Luis Beltrán.

De la cantera Arideros (Fig. 23), de 1,5 ha, se han extraído los materiales que ocupan la superficie concedida y en ella se llevan a cabo labores de remediación del sector explotado. En la cantera Arideros II, de la misma superficie, se realizan trabajos de preparación (quita de la cubierta vegetal y nivelación) para su explotación.

- Cantera municipal de la localidad de Lamarque
Se ubica en la denominada zona de chacras de la localidad de Lamarque. Ocupa una superficie de 0,8 ha (100 m de largo por 80 m de ancho); el espesor de material útil es de 2,5 m (Fig. 24). Su explotación es incipiente; el frente de cantera abierta con una pala cargadora perteneciente a la municipalidad local es de 30 m de largo por 15 a 20 m de ancho, con un espesor de 2 metros. A esa cota, en el piso de la labor ya comienza a brotar el agua del nivel freático. Son depósitos arenosos finos a gruesos con algo de gravilla. La actividad extractiva es discontínua y se encuentra supeditada a la necesidad de su utilización en la obra pública local.

- Cantera Ruca Malén
Está ubicada en la margen norte del río Negro, a unos 2,5 km de la localidad de Choele Choel, en un cañadón transversal al valle, por el que discurren canales que se entrecruzan y en cuyo piso, previa limpieza, se explotan las arenas finas. Este cañadón (Fig. 25) tiene una extensión de 3 km y un ancho que no supera los 50 m y en su recorrido existen varias canteras de arenas y gravillas que son explotadas en forma esporádica.

En este lugar se extrae material útil cuya potencia es de unos 0,50 a 0,80 m, constituida por alternancia de arenas finas y de rodados finos (2 a 4 mm) con matriz arenosa, en bancos de 0,30-0,45 m de espesor. Los materiales presentan buena selección y están escasamente cementados con carbonato de calcio. Son frecuentes las intercalaciones de rodados mayores de rocas volcánicas en una matriz arenosa.

El material útil tiene una cubierta de bancos fragmentados de areniscas cementadas y de arenas con

Figura 24. Cantera municipal de Lamarque, frente de extracción.

Figura 25. Cantera Ruca Malén.
CUADRO DE INDICIOS Y OCURRENCIAS MINERALES DE LA HOJA GEOLÓGICA CHOELE CHOEL

<table>
<thead>
<tr>
<th>Nº INDICIO</th>
<th>SUSTANCIA</th>
<th>NOMBRE</th>
<th>LOCALIDAD</th>
<th>COORDENADAS</th>
<th>HOJA 1:100.000</th>
<th>LITÓLOGÍA</th>
<th>EDAD</th>
<th>MINERALOGÍA</th>
<th>LABORES MINERAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Áridos</td>
<td>Cantera Darwin en campo de Massi</td>
<td>A 3 km al norte de Darwin, detrás del cementerio</td>
<td>39º 11' 01,2” 69º 44' 06,3”</td>
<td>3966-22</td>
<td>Gravas y arenas.</td>
<td>Plioceno-Pleistoceno</td>
<td>Ocupa una superficie de 1/2 ha.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Áridos</td>
<td>Cantera Darwin en campo de Massi</td>
<td>A 2 km al norte de Darwin</td>
<td>39º 11' 16” 69º 44' 17”</td>
<td>3966-22</td>
<td>Gravas y arenas.</td>
<td>Plioceno-Pleistoceno</td>
<td>Ocupa una superficie de 1 ha.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Áridos</td>
<td>Cantera sin nombre (km 986 RN 22)</td>
<td>Choele Choel</td>
<td>39º 15' 33” 65º 30' 08”</td>
<td>3966-22</td>
<td>Gravas y arenas.</td>
<td>Plioceno-Pleistoceno</td>
<td>La superficie es de unos 3 ha. Fue explotada intensamente tiene un frente en forma de "L" de 250 m x 300 m de largo y 80 m x 300 m de largo y 8 m de alto. Hay una importante cantidad de material acopiado.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Áridos</td>
<td>Cantera Ruca Malen</td>
<td>Choele Choel</td>
<td>39º 16' 03” 69º 38' 37”</td>
<td>3966-22</td>
<td>Gravas y arenas.</td>
<td>Plioceno-Pleistoceno</td>
<td>Cantera en actividad. Los minerales se extraen de explotaciones de los cañadones.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Áridos</td>
<td>Cantera sin nombre (RN 22, Frente al aeroclub)</td>
<td>Choele Choel</td>
<td>39º 16' 09” 69º 34' 24”</td>
<td>3966-22</td>
<td>Gravas y arenas.</td>
<td>Plioceno-Pleistoceno</td>
<td>Son tres destapes superficiales que ocupan una superficie de 1,5 ha.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Áridos</td>
<td>Cantera "Andisols"</td>
<td>Luis Batán Zona Chechas</td>
<td>39º 20' 46” 69º 43' 13”</td>
<td>3963-28</td>
<td>Gravas y arenas.</td>
<td>Plioceno-Pleistoceno</td>
<td>Tiene una superficie de 3 ha.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Áridos</td>
<td>Cantera sin nombre</td>
<td>Luis Batán Zona Chechas</td>
<td>39º 20' 53” 69º 43' 34”</td>
<td>3966-22</td>
<td>Gravas y arenas.</td>
<td>Plioceno-Pleistoceno</td>
<td>Cantera en actividad. Ocupa una superficie de 1/2 ha. Se prepara para iniciar la explotación.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Áridos</td>
<td>Cantera "Arideros II"</td>
<td>Luis Batán Zona Chechas</td>
<td>39º 23' 59” 69º 31' 58”</td>
<td>3966-28</td>
<td>Gravas y arenas.</td>
<td>Holoceno</td>
<td>Destapes superficiales de yeso pulverulado de aspecto tamizado.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Yeso</td>
<td>Tragua Tragua</td>
<td>Margen norte río Negro.</td>
<td>39º 23' 59” 69º 31' 58”</td>
<td>3966-28</td>
<td>Gravas y arenas.</td>
<td>Holoceno</td>
<td>Ocupa una superficie de 1/2 ha. Se prepara para iniciar la explotación.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Áridos</td>
<td>Cantera Municipal</td>
<td>Llamarque Zona Chechas</td>
<td>39º 20' 27” 69º 14' 17”</td>
<td>3966-28</td>
<td>Gravas y arenas.</td>
<td>Holoceno</td>
<td>Destapos superficiales de yeso pulverulado de aspecto tamizado.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Áridos</td>
<td>Cantera sin nombre (km 986, RN 22)</td>
<td>Al sur de Llamarque.</td>
<td>39º 39' 14” 69º 44' 20”</td>
<td>3966-34</td>
<td>Gravas y arenas.</td>
<td>Holoceno</td>
<td>Ocupa una superficie de 1/2 ha. Se prepara para iniciar la explotación.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Áridos</td>
<td>Cantera sin nombre (km 986, RN 22)</td>
<td>Al sur de Llamarque.</td>
<td>39º 40' 45” 69º 45' 23”</td>
<td>3966-34</td>
<td>Gravas y arenas.</td>
<td>Holoceno</td>
<td>Superficie de 1 ha a ambos lados de la ruta.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Áridos</td>
<td>Cantera "El Solito" (en cruce RN 230 con RP 2)</td>
<td>Choele Choel</td>
<td>39º 12' 43” 70º 51' 51”</td>
<td>3966-23</td>
<td>Gravas y arenas.</td>
<td>Plioceno-Pleistoceno</td>
<td>Superficie de 230 m de largo x 80 m de ancho y 1,20 m de potencia.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Áridos</td>
<td>Cantera sin nombre (km 986, RN 22)</td>
<td>Paraje "El Solito".</td>
<td>39º 58' 11” 69º 18' 47”</td>
<td>3966-35</td>
<td>Gravas y arenas.</td>
<td>Plioceno-Pleistoceno</td>
<td>Ocupa una superficie de 2 ha. Los destapes en explotación son de 250 m x 300 m y 3,50-4 m de alto.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Áridos</td>
<td>Cantera "Arideros"</td>
<td>Luis Beltrán Zona Chacras</td>
<td>39º 20' 46” 70º 51' 51”</td>
<td>3966-24</td>
<td>Gravas y arenas.</td>
<td>Plioceno-Pleistoceno</td>
<td>Cantera con superficie de 350 m de largo x 250 m de ancho y 3 m de alto. Se explotó en tres sectores.</td>
<td></td>
</tr>
</tbody>
</table>

Abreviaturas: Gyp: yeso
rodados de distintos tamaños y de escasa cohesión. Esta cubierta se elimina y acumula a los costados del cañadón para destapar los niveles inferiores de arenas finas y gravillas que son los que se explotan con fines comerciales.

- Cantera en campo del Sr. Massi (Darwin)
 Se localiza en la margen norte del río Negro a 2,5 km de la localidad de Darwin. Se explota un manto de arenas finas de 6 a 8 m de espesor. El perfil de la cantera de arriba hacia abajo está constituido por 0,20-0,30 m de cubierta vegetal seguida por un banco de 0,40 m de rodados de diferentes tamaños de rocas ígneas, una arenisca calcárea y por último las arenas que se explotan (Fig. 26 a). El piso de la cantera es una arenisca calcárea cementada con carbonato de calcio. El frente de explotación actual (Fig. 26 b) tiene una delgada cubierta vegetal (0,20 m), un banco de arenisca calcárea muy fragmentado de 0,30 m y un manto de 6 m de arenas finas.

Evaporitas

Yeso (uso agrícola)
 La manifestación yesífera está ubicada a 19 km en línea recta al SE de la localidad de Choele Choel, en el departamento Avellaneda, a unos 5 km al NE de la estancia Tragua-Tragua. Se accede desde Choele Choel por una huella hacia el sudeste que llega hasta el casco del establecimiento antedicho o bien por el camino que conduce al aeródromo local (picada del Negro Muerto).
 Según Vallés y Parisi (1974), es un manto yesífero que está localizado principalmente en la parte superior de unas suaves lomadas y truncado en parte por cañadones pequeños y cursos de agua temporarios. Presenta forma elongada en sentido N70°-75°O, supera los 1500 m de longitud y tiene un ancho aproximado de 50 metros. El manto se apoya sobre arenas y gravas pardo-grisáceas y pardo azuladas, escasamente diagenizadas. El perfil se compone de dos horizontes principales que los autores denominan superior e inferior. El primero tiene espesores variables entre 0,15 y 0,35 m, es de color blanco y tiene aspecto pulverulento. La ley es de 70 a 80% de CaSO₄·2 H₂O y con una granulometría tal que el 70% pasa la malla 100. El horizonte inferior consiste en agregados terrosos con abundantes concreciones de cristales de yeso en forma de rosetas color miel de hasta 3,5 cm, es más impuro que el superior, tiene un espesor total de 0,50 m y una ley de 50 a 57% de CaSO₄·2 H₂O. El yeso, de manifiesta baja calidad, podría utilizarse como fertilizante en agricultura en zonas no muy alejadas de su ya cercano, debido a que este tipo de materiales no soporta flete.

8. SITIOS DE INTERÉS GEOLÓGICO

Valle medio del río Negro
 La región del valle medio del río Negro reúne algunas de las características propias de la Patagonia Extraandina, y se considera que puede servir como ejemplo de la evolución de un típico paisaje patagónico. En ella se destaca el amplio valle del río Negro dentro de un relieve mesetiforme.
 Paisajísticamente, se puede dividir en dos unidades geomorfológicas bien diferenciadas. La primera está constituida por extensas planicies estructurales cubiertas por gravas y varios niveles de antiguas terrazas aluviales del río Negro, que con-

![Figura 26. Cantera Massi. a. Perfil en el que se observa el contacto del banco de rodados con el manto de arenas; b. Frente de explotación.](attachment:image.png)
forman un relieve mesetiforme. La otra unidad comprende la planicie aluvial actual y la terraza más moderna del río.

BIBLIOGRAFÍA

Kraglievich, L., 1930. La Formación Friaseana del río Félix, Laguna Blanca, etc. (Patagonia) y su fauna de mamíferos. Physis 10: 127-161.

Entregada en abril de 2010
Validada en mayo de 2010