CONTRIBUCION A LA PETROLOGIA
DEL
NOROESTE DE LA PATAGONIA
por
FELIX GONZALEZ BONORINO
1945
ÍNDICE

INTRODUCCION .. 1
PETROLOGIA ...
Plutonitas ..
Mineralogía ... 5
Petrografía ... 14
Granitos micrograníticos del C.º Catedral 22
Las rocas de la Serie Andesítica 23

FENÓGENIA ..
Rocas plutónicas del basamento 29
Rocas hipabissales ... 66
Rocas intrusivas más modernas 74
Rocas metamórficas del basamento 80
Rocas de la Serie Andesítica 88
Raseltos tipo "plateau" del Terciario Superior 121
CONTRIBUCION A LA PETROLOGIA
DEL
NorOeste DE LA PATAGONIA

POR

FELIX GONZALEZ BONORINO

1945
INTRODUCCION

El tema del presente trabajo es la descripción de una pequeña parte de la extensa colección de rocas ígneas y metamórficas que el doctor Egido Feruglio ha recogido durante sus largas campañas de exploración geológica en el noroeste de la Patagonia, especialmente en el área de la Hoja 40b, San Carlos de Bariloche.

Puede decirse, sin temor a equivocarse, que ninguna región de nuestro país ha recibido mayor atención de parte de los petrógrafos que aquella que se extiende al sur del lago Nahual Huapi. De las muestras recogidas por el doctor Feruglio, una pequeña parte ha sido descrita por P. Conucci (Conucci, 1939), con el valioso aporte de algunas análisis químicos; la doctora María Elisa M. de Noguez, por su parte, ha estudiado un cierto número de aquellas muestras en un trabajo que se conserva aún inédito. Las rocas de la Hoja 41b (Río Foyel) fueron descritas por el autor de este estudio (González Bonorino, 1944), mientras que las esfervitas modernas del Tronador no son conocidas a través de W. Leeson, quien estudió muestras recogidas por Ljunggren.

En este trabajo hemos puesto especial atención en las rocas del barroso cristalino. Alguna de las descripciones, sin embargo, corresponden a muestras de la Serie Andesítica, particularmente de la parte oriental de la región; se describe, además, un corto número de rocas plutónicas de edad más reciente, entre las que figuren los granitos del Cerro Catedral, y algunos basaltos supraterciarios.

La nomenclatura adoptada sigue, en términos generales, a la propuesta por Jahnneen, no por considerarlo superior, desde el punto de vista lógico, a las demás, sino simplemente, por ser la más elaborada y de uso más extendido entre los sistemas modernos de tipo mineralógico. Esta clasificación tiene la ventaja de no apartarse sino lo indispensable del viejo y acreditado
sistema de Rosenbusch, al mismo tiempo que establece una base cuantitativa. Siguiendo un estricto criterio petrográfico, el uso de los elementos de carácter cronológico, clasiático, se ha mantenido, en nuestra opinión, una práctica religiosa, que puede incluirse convenientemente en la interpretación geológica. El petrografo debe estar a caballo de posiciones europeas, expresando una glosolaxis tendida en criterios puramente petrográficos. El concepto cronológico parece imprescindible, para muchos geólogos, en comparación petroográfica distinta. En principio, no se debe que nos autorices a pensar que las condiciones geográficas de formación de una roca varían verticales o horizontales de un período a otro. Es evidente, por otra parte, que el grado de alteración de una roca no es un criterio de antemano valoracion petroclástico-geométrico para influir en la conformación. En este caso, a primera vista, parece distinguir entre una roca plegable o sedimentaria y otra eclogizada, por el color de su pasta, aunque esto refleje el estado de alteración de la misma.

Es lógico y conveniente, pues, continuar con el uso de términos que procuren un conocimiento de la edad de una roca en cuestión, echa que resulta especialmente imposible de superar de la observación de la roca en sí. Y es el caso, por ejemplo, de "deflores" y "perflorita". Muchos de los rocas de la parte andesítica de nuestra región presentan las características que correctamente no se asignan a los perfloritas en este tipo de cortejo de tercianas. Por todas estas razones, y siguiendo la práctica de la mayoría de los autores de habla inglesa, nos inclinamos al uso del término "perflorita", haciendo extensivo el de "amueblados a todas las edades".

En otros casos de necesidad para cualificar el criterio cronológico-estructural ha ido reduciéndose por otro estrictamente minero-geológico o textural. Mediante una consecuente redifi-
ción, es posible continuar con el uso de términos ampliamente difundidos.

"Idarita" y "púrfido cuarcífero", por ejemplo, deben distinguirse entre sí por la presencia de cenidina y ortoclase, respectivamente y no por su edad. Es un hecho comprobado que no todos los llamados "púrfidos cuarcíferos" son edad pre-terciaria poseen ortoclase en lugar de cenidina, aunque su evidente la mayor frecuencia en la primera.

Las diferencias entre "basalto", "molárico", y "diabasa" con, según el criterio adoptado, de índole esencialmente textural:

El molárico es mercedamente porfírico siendo sus reno-
cristales de plagioclase, mientras que el piroxeno es escaso a la vez como fenocristal y como componente de la pasta. La diabasa posee una textura ofítica o subofítica, y su grano es relativamente grueso. Según estos criterios eliminamos de la definición esa velación de la edad, sino también las condiciones estructurales de la roca.

Desde un punto de vista petrográfico, que es el que debe primar, creemos, tratándose de la nomenclatura de las rocas, una definición debe ser la expresión mineralógica y textural de las condiciones químicas y físicas reinantes en el magma durante su cristalización. De esta manera, el "grano grueso" de la diabasa no expresa necesariamente una posición geológica hipotética, sino un enfriamiento medianamente lento, el cual puede no deber

1) Este hecho debe interpretarse como el resultado de un proceso de inversión de cenidina a ortoclase, que caería dentro del concepto de "polipropía" de Barth. La inversión se manifiesa en el aumento del ñegulo de los felsópticos, a veces con cambio de orientación. Este fenómeno no es sólo función del tiempo, sino de otros factores también, entre los cuales, figura probablemente la composición química.

2) El término "textura" es empleado aquí, siguiendo la costumbre de los autores de hablar inglés, para indicar las relaciones íntimas, generalmente microscópicas, entre los minerales que componen una roca.
eventualmente a una posición hipobásal. Siguiendo este criterio
debiera ser evitado el uso de este último término; lo mismo pue-
de decirse de los vocablos "intrusivo" y "efusivo". Al emplearlos
en este trabajo no hemos hecho más que seguir una vieja costum-
bre, obligados ante todo por la carencia de términos mejores.
Por otra parte, su uso no acarrea ningún inconveniente, siempre
que se entienda que con ellos designamos esencialmente condicio-
nes-físicas del magma en sí, y no sus condiciones geológicas. (1)

Finalmente deseo expresar mi reconocimiento hacia el
doctor Egidio Feruglio, quien ha puesto a mi disposición las ro-
cas para su estudio; a la doctora María Elise Hermitte de Nóguès
por su colaboración prestada en diversos aspectos del mismo; al
señor Juan Carlos Manuel Turner por su ayuda en la confección de
las ilustraciones que acompañan a este trabajo; y al señor Al-
fredo Méndez, quien tuvo a su cargo la preparación de la mayor
parte de las secciones microscópicas.

1) Puede trasear a colega un ejemplo que ayuiderá a aclarar ma-
tra idea. El famoso cuerpo norfítico de Bushveld, de Transvaal
ha irrumpido en las capas superiores de la corteza de tal ma-
ra que la superficie de su enorme masa ha quedado expuesta a
la atmósfera, con la consecuente "congelación" de una capa ex-
terior que dio origen a una "felaita". El resto de la masa, pro-
tegida por dicha capa, cumplió su cristalización en forma su-
enta, tanto que habló una acentuada diferenciación gravitati-
va, con formación de norita, pirrocultita, plagioclásita, etc. De-
se el punto de vista geológico, el complejo puede ser con-
derado como efusivo; sin embargo, habría pretendería incluir
rocas (salvo la felaita) entre las "efusivas".
FLUTONITAS

Mineralogía

Plagioclase: La composición (1) de la gran mayoría de las plagioclases oscila entre 30 y 50% de anortita, con excepción de algunos granitos, pórfridos graníticos y granodioritas, que han sufrido un principio de metamorfismo simético, en los cuales la composición es albítica. El histograma de la figura 1 representa la frecuencia de los distintos tipos de plagioclase. Aparecen dos máximos, uno entre 30 y 50% de An, y otro entre 0 y 15%. El valor de este gráfico es relativo, ya que las muestras no han sido recogidas con un criterio estadístico. Sin embargo, sus líneas generales pueden ser tenidas en cuenta.

La característica más notable de las plagioclases es, quizás, fuerte fraccionamiento que presentan en las mayorías de las muestras, que se manifiesta en una marcada zonalidad, en ocasiones recurrente, y que resulta por lo común en un margen albítico. Con frecuencia, la albita resultante del fraccionamiento forma además pequeños cristales de contornos irregulares, ubicados de preferencia entre plagioclasa y feldespato potásico, o dentro de este último mineral, en forma de pertitas de reemplazo. La composición del margen códico oscila entre 0 y 5% de anortita. En ciertos casos existen dos zonas, o sea un núcleo y un margen, separados por un límite meto, el cual representa un cambio en com-

(1) Hallada en todos los casos con la ayuda de la platina universal, mediante el método de las extinciones simétricas.
posición de 10 a 20% de anortita. Los núcleos pueden mostrar ocasionalmente un reemplazo (autometamórfico) por albita, en áreas irregulares y extensión variable. Este auto-reemplazo es especialmente notable en los cristales con pasaje zonal brusco. Por lo que el límite del núcleo sigue los contornos cristalográficos, pero éstos se interrumpen a menudo para dar lugar a profundos engullamientos de la albita marginal, de tal modo que a veces quedan sólo restos del núcleo básico. La diferencia de composición entre núcleo y margen es variable; en diferentes cristales de una misma roca (nº 19) se obtuvieron los siguientes datos:

Núcleo: 80% ± 4% An - 32 ± An - 50 ± An
Margen: 20% ± 4% An - 30 ± An - 32 ± An

Como se ve, la diferencia entre núcleo y margen disminuye en ambos sentidos, es decir que cuanto menor es la proporción de calcio en el núcleo, mayor es en la zona externa. En los cristales con mesalidad ordinaria, en que el acabo de composición es gradual, el margen es mucho más estrecho y posee un porcentaje de anortita generalmente menor de 10%. En estos casos es común que la proporción de anortita sea relativamente constante en todo el resto del cristal, aumentando rápidamente la albita ya cerca del borde externo.

Siempre que se halla en contacto con el feldespato potásmico el margen albítico presenta un borde irregular con formas convexas que penetran debilmente en el cuerpo de aquél mineral; es esta una textura característica de reemplazo, análoga a la descripta en minerales metálicos con el nombre de "caris". En algunas rocas de tendencia porfirítica (nº 25), en que el cuerpo aparece en pequeños individuos redondeados, éstos han sido englobados por el margen albítico de la plagioclasa.

En muchas de las muestras se observa variación zonal recurrente. En algunos casos la recurrencia es bien marcada y repetida; incluso no son raros los casos de "reversión", es decir aquellos en que la proporción de anortita en una zona intermedia

(1) Los números se refieren a las descripciones petrográficas que siguen a estas consideraciones generales.
sobrepasa a la de todas las demás zonas. La figura 2 representa gráficamente algunos de los diferentes tipos de monalidad más frecuentes en estas rocas. Los diagramas no expresan sino relaciones cualitativas.

El maelado de los plagioclases no presenta especial interés. Como es usual, "albita", "Carlbad" y en menor escala, "paricline" predominan sobre las otras leyes. En algunas de las muestras que presentan signos de cataclasis, las maclas son muy irregulares, interrumpiéndose a menudo sin alcanzar a cruzar el cristal; estas maclas son evidentemente de origen secundario. Otras veces son lenticulares, acuñándose en ambos extremos luego de un corto recorrido. En algunas cristales, no ya afectados por plagioclases, las maclas se acuñan gradualmente al llegar a la zona albitica marginal. Lo corriente, sin embargo, es que aquellas cruecan externalmente el cristal.

La alteración de la plagioclase es variable, aunque en general no para de ser moderada. Se trata comúnmente de esquinitos en gránulos submicroscópicos y de laminillas de sericita. A veces se encuentra un poco de epidoto, o algún pequeño reemplazo por clorita. En el granito de Puerto Blest se observa un notable reemplazo esclítico.

La alteración selectiva de los feldespatos en sericita es un fenómeno prácticamente universal, que aún no ha recibido adecuada explicación. El hecho que la sericita aparece en la plagioclase demuestra que se trata de un proceso de reemplazo. Difícil es explicar su ausencia en el feldespato potásico. Evidentemente, el feldespato sodico es mucho más inestable que aquél frente a los líquidos hidrotermales, y el sodio es lavado en forma de cloruro, etc. En muchos casos de sericitización intensiva se cuenta en la literatura, el feldespato potásico ha sido también reemplazado por sericita, lo cual demuestra que en general es inestable bajo las condiciones del ataque hidrotermal, especialmente en los procesos de mineralización sulfúrica.
Feldespato potásico: Este mineral se presenta en mayor o menor cantidad en casi todas las plutonitas de nuestra región. En la mayoría de los casos se trata de ortoclase, pero el microclina es también frecuente. La distinción entre estas dos variedades de feldespato no es siempre fácil, ya que el microclina se presenta a veces con su manto característico.

El feldespato potásico es siempre anádral, parcialmente intersticial. Por lo común, presenta venas pertícticas de aspecto variable, que se disponen en un plano paralelo a (100). Existen, sin embargo, pertíctas que aparentemente no siguen esta regla. En general las pertíctas son de tipo "venoso", de rumbo paralelo y mediano espesor. Según sea la orientación de la sección, su trazado es más o menos regular, y su espesor variable; así, cuanto más se acerca al corte a (100), mayor es el espesor de las venas, aumentando también su irregularidad y número de anastomosis. Propiamente orientadas en la platina universal, todas las pertíctas muestran finas anastomosis.

La orientación de las pertíctas con respecto al individuo o que se hallan alojadas es relativamente constante. Lo común es que el clivaje del tercer plano coincide, de manera que el mismo atraviesa haciendo interrupción las venas. La figura 3 representa las cuatro orientaciones ópticas adoptadas por las pertíctas, de acuerdo a los resultados obtenidos mediante el uso de la platina universal. En ella está indicada la posición del elipsoide óptico del feldespato potásico, cuyos ejes han sido transportados al círculo máximo horizontal, escañados por los ejes y escañados por los ejes. La orientación de las pertíctas está dada por los arcos de círculo máximo que pasan por \(\alpha' \) y \(\gamma' \) por los planos de los ejes ópticos respectivos.

Estas cuatro posiciones corresponden a los cuatro casos posibles, considerando paralelos sabos ejes a las caras (001), y girando 180° alrededor de \(\beta \) y de \(\delta \), respectivamente.

Muchas veces se observa que al pasar una vena pertíctica
Fig. 2. - Representación gráfica de los tipos de zonalidad más comunes en las plagioclases de las rocas descritas en el texto. a,b,c,d,e, simple; f,g, oscilatorio normal; h,i, oscilatorio recurrente. Abscisa, distancia desde el centro del cristal; ordenada, $^\circ$ An.

Fig. 3. - Orientación de las partes de reemplazo dentro del feldespato potásico. La normal óptica de este último ha sido trasladada al centro de la figura, y los ejes a, b y c sobre el círculo máximo horizontal. Los signos d' y d'' representan la orientación de distintas venas albíticas.
de los fragmentos es alargado en el sentido del eje óptico, orientación que predominia, aunque existen, sin embargo, casos en que las fracturas son aproximadamente normales al eje óptico.

Hornblenda: Las características de la hornblenda son muy constantes en las rocas de esta región. Se trata de un tipo común, con ángulo de extinción poco variable (2v=17°), y pleocristia relativamente débil: 2 verde pardusco a verde lavanda en los bordes adelgazados; 1 verde oscuro; X-amarillo verdoso. Los tintes sobre 2 están en general muy parecidos; la absorción sobre la normal óptica parece ser, en general, apenas mayor que 2. El maclaje simple sobre (100) es frecuente.

Los cristales de hornblenda tienden por lo común al idiomorfismo, pero con frecuencia se acomodan parcialmente a los intersticios formados por las tabillas de plagioclasa. En algunos casos en que el anfibol es particularmente abundante, se observan grandes individuos, de 3 a 5 milímetros, subredondos, que encierran cristalitos de plagioclasa y, ocasionalmente, algunos de apatita. Estos pequeños individuos de plagioclasa son zonales, y su composición no es más básica que el resto de la plagioclasa de la roca; antes bien, sus zonas marginales alcanzan con frecuencia al bitita u oligoclasita. Este hecho tiene importancia, pues revela que el englobamiento de los cristales se efectuó en una etapa final de la cristalización de la roca.

Por lo general la hornblenda es fresca, pero no es raro hallar muestras cuyo anfibol presente señales de colorización evidenciadas por un empalidecimiento y pérdida de la birrefringencia. En algunos casos extremos hoy además reemplaza parcial por epidoto.

Biotita: Este mineral es más abundante que la hornblenda. Sus caracteres ópticos son los comunes; pleocristia intenso, 2=Ye do negruzco, X=amarillo verdoso pálido. En los cristales que presentan signos de alteración, el pleocristio disminuye en consciencia. Su hábito es subredondo, aunque a veces aparece ocupando inter

Comentarios:

1. **Hornblenda**: Esta es una fase mineral común en las rocas ígneas y metamórficas, y se caracteriza por su color verde oscuro y su estructura acicular. En las rocas de esta región, su orientación es predominante, aunque también existen fracturas normales.

2. **Biotita**: Es una fase mineral que se encuentra a menudo en asociación con la hornblenda. Su color puede variar de azul a verde, y su estructura es típica de los minerales de la serie feldespática. La biotita puede presentar signos de alteración, lo que se observa en los cristales que pierden sus características pleocristiales.

Observaciones:

- La presencia de hornblenda y biotita indica una roca ígnea de composición basáltica o andesítica.
- La orientación de los fragmentos sugiere procesos de fracturación y recristalización.
- La alteración de la biotita indica condiciones de temperatura y presión variables después de la cristalización inicia.
Fig. 4.-- Representación estereográfica de las maclas del microclino. (a) macla de la "albita"; (b) macla de "peri-clino". En cada caso el plano de unión ha sido llevado al plano de la figura. El eje de macla es en ambos casos la normal a (010).

Fig. 5.-- Representación de las rocas I a V en el triángulo feldespático. La línea de puntos indica la posición de la supuesta curva cotética.
ticos incluyendo pequeños individuos de plagioclase, tal como en el caso del anfibol. La alteración más común de la biotita es la cloritización, acompañada a veces por una segregación de óxido de hierro.

Puede considerarse como característica de la biotita de estas rocas el reemplazo parcial por prehnita, la cual forma agregados fibrolaminares, de forma lenticular, intercalados entre los clivajes de la mica, separando parcialmente las laminitas (1). En algunos casos (nº 35), en lugar de prehnita encontramos andalucita, en un agregado de pequeños prismas subparalelos, de forma análoga a los de prehnita.

Titánita: Se relaciona bastante frecuentemente con estas rocas; se presenta con hábito subdegal o intersticial, siendo quizás el producto de fenómenos deutéricos. Otras veces aparece reemplazando a la hornblenda, con hábito anedral. En estos casos se evidencia su origen "terciario-magnético".

Magnetita: No presenta particularidades dignas de mención. Su hábito es preferentemente subdegal. A menudo la magnetita reemplaza a biotita, adquiriendo entonces forma irregular. En estos casos se trata posiblemente de un residuo de alteración.

Apatita: Aparece generalmente en pequeños prismas, incoloros, sin inclusiones notables.

Textura: La textura es la normal en este tipo de rocas, es que el feldespato potásico está subordinado a la plagioclasa. El primero es siempre anedral, intersticial, lo cual tiende a dar a la roca la textura llamada "monzonítica". Sin embargo, a medida que aumenta en proporción el feldespato potásico, va perdiendo su hábito intersticial, aunque sin alcanzar nunca, ni aun en los gra-

(1) Estos agregados son idénticos a los descriptos por S.Holmquist (Geol. För. i. Stockholm Förh, LIX, 21937, pag. 234-38)
nitéis, idiomorfismo apreciable.

Un detalle textural interesante, característico de la mayor parte de las rocas estudiadas, lo constituye los pequeños cristales de albita, de hábito variable desde el triomero a idiomorfico, que se disponen a lo largo de los contactos entre ambos feldespatos, agrupándose aquí y allí en agregados en los que los cristales aumentan de tamaño e idiomorfismo, reemplazando gran parte del feldespato potásico. Otros detalles se describen en la parte correspondiente a cada mineral.

En ciertas ocasiones la roca presenta señales de cataclasis; los cristales de feldespato adquieren una característica turbina homogénea, y sus facetas pueden indicar torsiones y otras deformaciones mecánicas. El cuerpo reacciona a las presiones fragmentándose; esta granulación va acompañada de mayor o menor recristalización. En algunos casos, en que la granulación es algo más intensa, el cuerpo no presenta en absoluto extinción ondulada, lo que indica una recristalización completa. La granulación no se, en ningún caso, excesiva.

Petrología: Toda la consideración petrologica sobre las rocas intrusivas de esta región tropica con la carencia de información referente a su composición química. Los únicos análisis que figuran en la literatura corresponden, desgraciadamente, a algunas rocas hipotéticas, cuyo valor como representante del magma intrusivo original es muy relativo. En la tabla I se transcriben los análisis a que se hace referencia; pertenecientes a Pi Comucci (1) y a los cuales de les ha calculado la norma.

(1) Renda Ac. It., I (1939) pag. 173-175 y 183.
<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>59,28</td>
<td>77,30</td>
<td>76,18</td>
<td>49,73</td>
<td>50,42</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>16,42</td>
<td>12,70</td>
<td>14,45</td>
<td>15,34</td>
<td>15,70</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>2,82</td>
<td>0,60</td>
<td>0,82</td>
<td>-</td>
<td>5,63</td>
</tr>
<tr>
<td>MgO</td>
<td>2,59</td>
<td>-</td>
<td>-</td>
<td>6,27</td>
<td>4,55</td>
</tr>
<tr>
<td>MnO</td>
<td>0,07</td>
<td>-</td>
<td>-</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>CaO</td>
<td>3,46</td>
<td>-</td>
<td>-</td>
<td>9,27</td>
<td>7,22</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5,86</td>
<td>0,30</td>
<td>4,66</td>
<td>8,82</td>
<td>6,78</td>
</tr>
<tr>
<td>K₂O</td>
<td>3,35</td>
<td>3,33</td>
<td>3,30</td>
<td>2,99</td>
<td>3,19</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2,63</td>
<td>4,19</td>
<td>0,73</td>
<td>0,27</td>
<td>0,34</td>
</tr>
<tr>
<td>LOI</td>
<td>0,68</td>
<td>-</td>
<td>1,27</td>
<td>0,12</td>
<td>1,16</td>
</tr>
<tr>
<td>H₂O</td>
<td>0,19</td>
<td>-</td>
<td>0,24</td>
<td>0,24</td>
<td>0,18</td>
</tr>
<tr>
<td>CO₂</td>
<td>0,55</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂O+</td>
<td>0,24</td>
<td>0,32</td>
<td>-</td>
<td>0,24</td>
<td>0,30</td>
</tr>
<tr>
<td>Total</td>
<td>100,16</td>
<td>100,22</td>
<td>100,32</td>
<td>100,15</td>
<td>100,39</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuero</td>
<td>11,65</td>
<td>39,30</td>
<td>44,43</td>
<td>-</td>
</tr>
<tr>
<td>Ortoclase</td>
<td>15,57</td>
<td>27,50</td>
<td>4,45</td>
<td>7,50</td>
</tr>
<tr>
<td>Albite</td>
<td>26,30</td>
<td>27,75</td>
<td>27,77</td>
<td>17,92</td>
</tr>
<tr>
<td>Anortita</td>
<td>21,95</td>
<td>3,06</td>
<td>22,24</td>
<td>36,70</td>
</tr>
<tr>
<td>Enstatita</td>
<td>3,86</td>
<td>-</td>
<td>0,29</td>
<td>2,35</td>
</tr>
<tr>
<td>Wolestonita</td>
<td>1,35</td>
<td>-</td>
<td>0,16</td>
<td>0,47</td>
</tr>
<tr>
<td>Ferrocita</td>
<td>1,85</td>
<td>-</td>
<td>-</td>
<td>5,95</td>
</tr>
<tr>
<td>Forsterita</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2,65</td>
</tr>
<tr>
<td>Fayalita</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,12</td>
</tr>
<tr>
<td>Magnetita</td>
<td>1,32</td>
<td>-</td>
<td>0,98</td>
<td>2,28</td>
</tr>
<tr>
<td>Ilmenita</td>
<td>4,17</td>
<td>-</td>
<td>0,34</td>
<td>0,34</td>
</tr>
<tr>
<td>Horna</td>
<td>-</td>
<td>0,94</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Corindón</td>
<td>-</td>
<td>1,32</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO₂Ca</td>
<td>1,20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Norma

I - "Porfirita diorítica". Filón en micaritas, puesta sobre, río Sirecó.

II - "Huela streta del río Fichabat a Valle dell'Estancia la Filia". Aplita.

III - Aplita. Filón en granito, casi 2 km del valle de Cosallo, río P.C.

IV - "Porfirita gabbrica amphibólica", de Las Mortegas, río Sirihuau.

V - Idem, río Sirihuau.
De estos cinco análisis el único que puede considerarse como una representación más o menos fiel del magma indiferenciado es el I, correspondiente a una acuñítita granodiorítica. Los restantes son, como se ve, disquisitetas laucocráticas y melanocráticas de composición muy variable.

La descripción original correspondiente a la roca I menciona feldespato alterado, indeterminable, pseudomorfos de clorita y epidoto, y una pasta fina con feldespato, anfibol actinolítico, clorita, epidoto y calcita. (1) La roca posee alrededor del 50% de plagioclase normativa, de composición Ab 56, An 44. Parte de la álumina y el calcio habría que atribuirlo a la horblenda, en parte, (fencristales) descompuesta en clorita y epidoto o calcita. Con ello la proporción de anortita decrecería un poco, alcanzando la plagioclase el rango de andesina media correspondiente, aproximadamente a la composición modal predominante en las rocas de la región.

Proyectada la proporción de los tres metasilicatos Wi-Mo-Fa en el triángulo correspondiente, 5101Ca - 5102Mg - 5103Fa, vemos que cae dentro del área de inexistencia de los piroxenos determinada por Ashland, especialmente con el aporte de algo de calcio proveniente de la anortita. Este hecho es considerado por Kennedy como favorable a la formación de anfibol en lugar de piroxeno. (2) La suma de los metasilicatos más algo de álumina y tal- vez titanio representa el anfibol modal de la roca.

Los otros cuatro análisis corresponden a dos aplitas y dos lámpofílos, que presentan características químicas muy dispares especialmente las dos primeras (II y III). La muestra II, que es una aplita adamasítica indica un rumbo normal en la diferenciación, con el enriquecimiento talcúl en los dos álcalis. La muestra III

(1) Comacci, P., loc.cit., pag.183
en cambio, demuestra una inusitada pobreza en potasio y relativamente elevada proporción de calcio. Estas rocas están constituidas casi exclusivamente por material feldespático y cólico; sus respectivas composiciones, junto a la muestra I, considerada como probable magma original común de ambas aplitas, están representadas en el diagrama ternario feldespático (fig. 5). Se observa de inmediato que no puede tratarse de una simple ecualización del líquido feldespático de la roca I con la formación de II y III. De ser así, los tres análisis caerían sobre una recta.

La roca II puede considerarse producto de un proceso normal de diferenciación del magma I. La composición de la III, en cambio, es más difícil de explicar por cristalización fraccionada. Muy poco se ha conocido acerca del sistema ternario de los feldespatos para aventurarse una explicación que no sea una conjetura. Por lo pronto, es difícil pensar en un proceso de aislación de una material calcáreo; ello provocaría una desnaturalización del magma que no se manifiesta en la aplita III, sino en el contrario, ya que su contenido de cólico libre es aún mayor que en la II. Por otra parte, la caja del batolito está formada casi exclusivamente por gneisico y micacita, cuya aislación causaría un aumento de potasio en el líquido. Otra alternativa sería la pérdida de potasio por metasomatismo de las rocas de caja, explicación posible aunque poco probable, dada la naturaleza altamente metamórfica y ácida de estas últimas, además, el metasomatismo potásico va acompañando de ordinario por aporte de alúmina.

La composición del feldespato normativo de los lampróforos IV y V es bastante próxima a la de la aplita III; no ha de descartarse la posibilidad de que exista una relación genética o menos directa entre estas rocas.

En cuanto a la derivación de los magmas apliticos y lamprofíricos por simple división o ecualización del material original (I), no encuentra apoyo en nuestro caso. Fácilmente puede probarse que no existe mezcla, en cualquier proporción que fuera
de cualquiera de las wplitas con cada uno de los lómpóficos que
dó como resultado la composición I.

Fenómenos equigránicos y deutéricos: Estos fenómenos consisten
esencialmente en la formación de diversos tipos de texturas de
reemplazo, generalmente comprendidas bajo la denominación de per-
titas. No es fácil establecer la relación precisa entre este clasi-
de procesos y la formación de pegmatitas y wplitas; sin embargo,
su analogía en muchos aspectos llama a la vista a poca que angi-
acen sus detalles. Los fenómenos que vamos a describir no son
d ni con mucho exclusivos de las rocas de esta región; al contrario
ha tenido lugar, en mayor o menor escala, en casi todas las ro-
cas graníticas; la intensidad con que desarrollan haber ocurrido
en muchos de los casos estudiados hace que merezcan, sin embargo,
un capítulo aparte.

Los distintos tipos de partitas y otras texturas de
reemplazo se detallan en la parte descriptiva, y al referirnos
a los feldespatos en general. El primer problema que se presenta
es el de si se trata de un proceso de reemplazo, o de simple re-
llano en grietas, en la manera postulada por Olaf andersen.(2) Se-
gún este autor, el paulatino enriquimiento de un granito casi to-
talmente consolidado provoca el agrietamiento del feldespato pot-
sico en planos normales al eje a (aproximadamente), que es la di-
rección de mayor coeficiente de dilatación. Tales grietas serían

(1) Este término se usa aquí para indicar la última fase de la
etapa ortotética, que procede inmediatamente por un índice
la formación de wplitas y pegmatitas(Perman, l.e., Min. pet.
Mittl, 11, 1931) y por otro, a los fenómenos deutéricos. De aca-
de a nuestra interpretación la formación de pegmatitas y apli-
tas tendría el mismo significado, y correspondería en parte, a
una misma fase, que la de partitas. Los fenómenos deutéricos a
clarificar, entonces, a la formación de partitas, ya que este p:
coc se produce en condiciones que se consideran característi-
cas de la fase deutérica, es; en resumidas cuentas, una"albitiza-
ción" de relativamente alta temperatura.

(2) Norsk Geol. Tid. (1928) 116-207.
aprovechadas por el líquido residual para introducirse en el cristal, sin perjuicio de ensanchar la vía existiendo parcialmente las venas. En realidad, cada se opone, en nuestro caso, a que dicho agrietamiento haya sido el factor determinante en la orientación de las venas; en verdad, es sugestiva su constante orientación parelala a (100). Pero no hay ninguna duda que el mecanismo de penetración ha sido esencialmente el reemplazo del feldespato potásico. Las grietas, necesariamente muy finas, pueden haber permitido la introducción inicial de la solución, que luego fue reemplazando lateralmente las paredes. La delgadez inicial de las grietas se deduce de los siguientes hechos. Primero, la contracción del cristal tiene lugar en el intervalo de temperatura entre la formación del mismo y la consolidación de todo el líquido pertítico, intervalo que en ningún caso ha de sobrepasar los 100° C. En este intervalo de temperatura, tomando 1.8×10^{-5} como el valor del coeficiente de dilatación lineal a lo largo del eje a (1), la contracción del feldespato será de 0,18; esta cifra debe ser dividida por el número de venas pertíticas presentes, con lo cual se obtiene, para cada grieta, una dimensión pequeña, más microscópica. En segundo lugar, la formación de grietas de anchura análoga a la de las venas que a menudo se ocultan dentro del cristal, traerían como consecuencia una desviación relativa de los trozos separados por las pertitas; la extinción simultánea que ellas oírían siempre presentan demuestran que no ha habido movimiento de tal naturaleza.

Otro punto a considerar es la orientación de las pertitas. Los diagramas de la fig. muestran una apreciable constancia en la posición del cilindro óptico de la vena pertítica respecto a la del feldespato potásico. En muchos casos se observa que el clivaje atraviesa a aquellas sin interrupción. Una dependencia semijunta en la orientación de las componentes de una textura de intercristalino ha sido considerada en muchos casos como seguro indicador de, 1) cristalización simultánea, o 2) exsolución.

(1) Rosenholtz, J. L and Smith, D. T., Amer. Min. XXVII (1942), p. 344-9
Es este un caso, sin embargo, en que no puede caber ninguna duda acerca de la naturaleza (reemplazo) de las partitas. Innumerables casos se van de transición entre áreas más o menos irregulares de albita, que ocupan una buena parte de algunos individuos de feldespato potásico, producto evidente de sustitución, y venas regularmente orientadas. En ocasiones se observa una prolongación albítica marginal que parte de un individuo subedrál de plagioclasa, y se introduce en cada cuña el cuerpo de un feldespato potásico; la orientación de esta cuña será, naturalmente independiente de la del cristal en que se introduce. Pero esta cuña puede prolongarse en una mínima vena pertípticas, y, en un punto dado de la cuña, en donde ésta se ha adelgazado hasta el espesor de la vena, la orientación de esta última cambia bruscamente, adaptándose a la del feldespato potásico (fís. 2). Se necesita admitir, pues, que la orientación estructural (reticular) de las paredes influye decisivamente en la del líquido que cristaliza en su contacto. Considerando este hecho y la comprobación de que la textura gráfica no implica lecocristalización de sus componentes (pag.), se llegó a preguntar si el criterio de la orientación no debe ser interpretado a la inversa de como lo ha sido hasta ahora.

Entre las partitas descriptas, en otro lugar existen algunas que parecen ser debidas a exfoliación. Son partitas finas, del tipo filiforme, muy regulares en su recorrido. Se de hacer notar que la lecocristalización debe ser una condición probable. Se inclinable de estos casos de exfoliación, tanto más si se tratan a la exfoliación, como sostiene , Spencer; de un intercambio de cationes sobre un mismo y único reticulado silico-alaumínico.

Origen del material reemplazante: Tanto el material pertítico, como el que se ha introducido entre los individuos de plagioclasa y feldespato potásico formando cristalitos de albita, o el que reemplaza en áreas irregulares a aquel último mineral, son produc-
tos del fraccionamiento de la plagioclase. La aceleración del en- friamiento de la masa casi totalmente consolidada, cuya pérdida de calor no es más compensada por el calor de cristalización, im- pide el restablecimiento del equilibrio entre líquido y sólido. El fraccionamiento del líquido comienza a veces en las primeras fases de la cristalización, con la aparición de zonas interiores; otras veces, aquel proceso tiene lugar casi exclusivamente durante la última fase, en cuyo caso se observan pocas zonas en los cris- tales de plagioclase, con un crecimiento rápido en calcio en sus morganas (ver fig. 2). Evidentemente, el grado de fraccionamien- to no será igual en un caso que en el otro.

El intervalo de cristalización de la plagioclase es no- toriamente mayor que el del feldespato potásico; comienza su pre- dicipitación mucho antes, y finaliza después que este último mi- neral ha consolidado totalmente. El líquido residual alcalino, uni- tamente puede cristalizar como una zona marginal de la plagioclase, como agregado totalmente del mismo, posee una relación de reacción a cargo el feldespato potásico. Este cambio en el comportamiento del sistema puede expresarse gráficamente en la forma que muestra la figura 6. Tomando como punto de partida la composición correspondiente a la roca I, el líquido experimenta un fuerte fraccionamien- to, marcado al cual alcanza a la curva cotóctica CD muy abajo; al-

Fig. 6

gue el líquido la curva precipitando plagioclase y ortoclase (o mi- croclino), hasta que, muy cerca del locus AB, aquella experiencías
ta un fuerte cambio de dirección hacia el ángulo Cr. Apenas antes de alcanzar el magma al punto de la curva en que está se hace paralelo al lado Or Ab, el feldespato potásico comienza a ser disuelto por el líquido, que precipita en su lugar plagioclase albítica.

Es muy posible que el reemplazo de ortoclase por albita sea un efecto de la concentración de volátiles en el líquido residual; nada se puede afirmar al respecto. Esta misma relación paratáctica se encuentra en las pegmatitas. En verdad, uno no puede menos que preguntarse si la fase partitica no representa a aquella de reemplazo en las pegmatitas. Por nuestra parte, nos sentimos inclinados hacia la afirmativa. El líquido de la fase partitica es el que, por concentración, formaría el magma pegmatítico. De manera que la presencia de abundantes partiticas en un cuerpo intrusivo granítico implicaría una correspondiente escasez general de pegmatitas. Esta hipótesis se encuentra apoyo en la región que estamos tratando, en donde las pegmatitas son notablemente escasas; es necesario, con todo, el estudio minero-cristalino de muchos otros ejemplos, antes de dar por confirmada o rechazada la hipótesis.

Granitos microcrásicos del Cerro Catalán: Estas rocas, entre las cuales hay que incluir probablemente el pórfido granítico de la muestra n° 46, representan, según se desprende de las observaciones geológicas, una fase intrusiva más reciente, que las restantes que característica esencial en su textura gráfica; sus detalles pueden ser obtenidos de las correspondientes descripciones. Con respecto al intercrescimiento microcrático, aunque parcialmente desarrollado, hay que destacar el siguiente hecho. Mediciones con la plata universal han permitido demostrar que no existe ninguna relación aparente entre las orientaciones del feldespato y del cuarzo. Este hecho concuerda con las observaciones de Wahlstrom, no así con las de Ferechmann, quien postula una constancia en las reg.

(1) Var. Feruglio, Bol. Inf. Petr., 30, 200(1941)27-34
(2) Amer. Minér., 24(1939)691-98
Las rocas de la Serie Andesítica: - Este complejo volcánico se ha formado por una gran variedad de materiales efusivos y piroclásticos, entre los cuales, predominan las andesitas, aunque con frecuentes también las riperitas, trachítas, granodioritas, etc. Así como en su litología, es la serie Andesítica suavemente variable en estructura; la mayor parte de ella, sin embargo, se presenta en forma de montes, con intercalación de capas piroclásticas, mientras que elige "mochas", y otras formas locales de intrusión subterráneas de estos montes; cuando estas formas intrusivas predominan, como sucede en los centros eruptivos, la estructura se hace suavemente confusa.

La extensión regional de la Serie Andesítica del terciario inferior es muy grande. Tiene la cordillera principal en forma de ancha faja, al menos desde el sur de Mendoza hasta la Patagonia septentrional.

Solamente en el tramo comprendido entre los paralelos 41° y 43° ha sido este complejo estudiado con alguna detención, especialmente desde el punto de vista petrográfico. Hay ilustrativos, en este respecto los análisis químicos que acompañan la descripción de un cierto número de rocas del área de la hoja 406 y adyacencias, realizadas por P. Canziani en base a material recogido por el doctor G. Paruglio (1). Los análisis se reprodujeron en la tabla VII, acompañados de sus respectivas "normas". En la pág. 27 aparece el correspondiente diagrama de variación de los ácidos. De la misma se desprende que es ocioso pretender sacar conclusiones respecto al proceso diferenciador, que dió lugar a tan variado conjunto litológico, en base a un número tan reducido de análisis. Sin embargo, además, el hecho que las muestras a analizar no han sido, por varias y muy explicable

(2) Canziani, P., loc. cit., 189-209
Tabla II

COMPOSICIÓN QUÍMICA DE ALGUNAS ROCAS DE LA SERIE ANDESÍTICA, SEGÚN P. COMUCCI (1939)

<table>
<thead>
<tr>
<th></th>
<th>48</th>
<th>34</th>
<th>33</th>
<th>22</th>
<th>30</th>
<th>54</th>
<th>9</th>
<th>5</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>47.86</td>
<td>58.64</td>
<td>62.10</td>
<td>65.57</td>
<td>74.76</td>
<td>75.54</td>
<td>77.32</td>
<td>78.76</td>
<td>79.60</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.79</td>
<td>1.62</td>
<td>0.86</td>
<td>1.50</td>
<td>0.12</td>
<td>0.14</td>
<td>0.42</td>
<td>0.18</td>
<td>0.14</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.31</td>
<td>0.37</td>
<td>0.32</td>
<td>0.16</td>
<td>0.05</td>
<td>0.04</td>
<td>tr.</td>
<td>tr.</td>
<td>0.10</td>
</tr>
<tr>
<td>FeO</td>
<td>5.23</td>
<td>2.81</td>
<td>1.92</td>
<td>1.21</td>
<td>1.05</td>
<td>1.19</td>
<td>1.75</td>
<td>2.00</td>
<td>1.80</td>
</tr>
<tr>
<td>MgO</td>
<td>9.02</td>
<td>5.41</td>
<td>3.37</td>
<td>1.17</td>
<td>0.16</td>
<td>0.94</td>
<td>0.23</td>
<td>0.23</td>
<td>0.23</td>
</tr>
<tr>
<td>MnO</td>
<td>0.21</td>
<td>0.13</td>
<td>0.09</td>
<td>0.07</td>
<td>tr.</td>
<td>0.03</td>
<td>tr.</td>
<td>tr.</td>
<td>tr.</td>
</tr>
<tr>
<td>MgO</td>
<td>5.90</td>
<td>5.06</td>
<td>1.26</td>
<td>2.62</td>
<td>0.21</td>
<td>0.36</td>
<td>0.30</td>
<td>0.36</td>
<td>1.10</td>
</tr>
<tr>
<td>CaO</td>
<td>11.33</td>
<td>5.88</td>
<td>1.26</td>
<td>2.62</td>
<td>0.21</td>
<td>0.36</td>
<td>0.30</td>
<td>0.36</td>
<td>1.10</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.73</td>
<td>3.78</td>
<td>5.10</td>
<td>2.51</td>
<td>4.78</td>
<td>3.50</td>
<td>4.01</td>
<td>1.25</td>
<td>2.38</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.80</td>
<td>1.22</td>
<td>4.53</td>
<td>4.98</td>
<td>4.98</td>
<td>3.42</td>
<td>3.70</td>
<td>5.56</td>
<td>2.38</td>
</tr>
<tr>
<td>H₂O</td>
<td>0.04</td>
<td>0.60</td>
<td>0.58</td>
<td>1.46</td>
<td>tr.</td>
<td>0.24</td>
<td>0.30</td>
<td>0.22</td>
<td>4.04</td>
</tr>
<tr>
<td>H₂O</td>
<td>2.56</td>
<td>1.36</td>
<td>1.87</td>
<td>1.90</td>
<td>0.28</td>
<td>0.73</td>
<td>0.33</td>
<td>0.92</td>
<td>1.37</td>
</tr>
</tbody>
</table>

| Total | 100,49:100,52 | 100,65:100,09 | 100,80 | 99,84 | 100,93 | 100,56 | 100,12 |

Nombres

- Cuarzo
- Ortosa
- Albite
- Anortita
- Volcánitico
- Latitita
- Ferromilita
- Apátita
- Titanita
- Ilmenita
- Magnetita
- Hematita
- Corindón

48 - Basalto. Flanco derecho del valle que baja desde el Cº Colorado, hacia la derecha del río Mirihuau.

34 - Andesita porfirítica. Maquinchao.

33 - Trapita. Río Village.

22 - Andesita porfírica cuarcófiera. "Stratida a Sud di Comalba."

30 - Liperita. Al largo del P.O., entre cita. Los Cóndores y el río Pichillau.

54 - Liperita. Flanco izquierdo del valle inmediatamente arriba de Inalef.

9 - Liperita. Flanco izquierdo de la valle del Río Pichillau a valle de la "Islandia de los Pilares 6 a valle de la "Stratida".

rezones, seleccionados con un criterio petrológico. Las muestras analizadas no corresponden a un único centro eruptivo, sino que provienen de lugares muy distantes entre sí. Por otra parte, la alteración, tan frecuente en estas rocas, dificulta todo estudio petrológico.

Con todo, los análisis referidos sirven para obtener una mejor idea acerca del tipo magmático predominante y de la gran variedad de caminos seguidos por la diferenciación.

Los basaltos de la Serie Andesítica son de dos tipos, olivínico y toleítico o, por lo menos no olivínico. En la mayor parte de los basaltos con olivina este mineral se encuentra totalmente alterado en serpentina, especialmente bowlingita, igual que muchos de los basaltos procedentes de la hoja 41B. Cuando estas rocas se presentan en forma de mantos intercalados en el complejo andesítico, no hay problema respecto a su edad, pero cuando aparecen en forma de díques dentro del citado complejo o de las plutonitas del basamento, es muchas veces difícil asegurar que no se trata de los basaltos más modernos que forman los conocidos escorizas paragónicas. Estos últimos se distinguen sin embargo por su aspecto menos alterado, la constante presencia de olivina y su textura y composición típicamente basáltica, que excluye el tipo mafírico, común dentro de la Serie Andesítica.

Entre los tipos litológicos, las andesitas predominan sobre las demás rocas. Su composición no ofrece en general características constantes; su grado de alteración es también variable, siendo ésta comúnmente del tipo propilítico; es decir, abundante alteración de los férmicos en albita y epidoto, eventualmente con algo de pirita, y de la plagioclase en calcita, sericita y es sulfurita.

Albitización.- En las albitísferas de la región de la hoja 41B los fasoncristales de plagioclase han sido reemplazados totalmente por albíta (án 5 a 10%); en algunos casos se ha podido observar estados intermedios de este proceso, en que las venas de albíta penetran en grietas irregulares, enviando hacia ambos lados cortes
prolongaciones cuneiformes. En otros ejemplos la albita se ha introducido forzando una red intrincada de trazado muy irregular y confuso. Los albitófiroso de la hoja M. Payel se encuentran localizados esencialmente en dos lugares: en la mina de plomo Santa Rosa, situada sobre las nacientes del Río Chubut, y en el Portezuelo de Apichig; dos lugares éstos caracterizados por manifestaciones hidrotermales más o menos débiles. Es poco probable que éstas tengan alguna relación con la albitización.

La presencia de rocas albitóféricas en la Serie Andesítica trae a colación el problema de la "suite" espílítica. Si bien no hemos hallado espilitas verdaderas, existen albitófiroso y quaratófiroso (traquiandesasitas). (1) Es sabido que los complejos espílíticos están relacionados casi siempre con depósitos de geosínclinal; su carácter de efusión submarina está revelado en muchos casos por la presencia de "pillow-lavae". Estas manifestaciones volcánicas, predominantemente básicas y propias de la etapa "geosínclinal", han sido transformadas en muchos casos en "se-quietos verdes" (green schists) por el metamorfismo regional. La "suite" espílítica, que incluye espilitas y quaratófiroso, ha sido considerada por muchos autores como una serie diferenciativa independiente, equivalente en categoría a las series "atlántica" y "básica".

En los complejos espílíticos, sin embargo, las espilitas y quaratófiroso están asociadas a basaltos normales y andesitas. Este hecho, unido a la poca individualidad de su quimismo, hace inosostenible aquella hipótesis. En cambio, se acepta que son condiciones geológicas especiales las que determinan la aparición de tales rocas en una serie cal-álcalina normal. Estas condiciones serían ya en gestión de sedimentos fundidos por el magma, ya extracción del agua al atravesar dichos sedimentos, o la circulación

(1) En la serie de Attriquitrón hay además filón-capas de disba-
sa albita que quizás podrían corresponder a la Serie Ande-
sítica, aunque nos inclinamos a considerarlos más antiguos (Mesozoico superior).
e incorporación de aguas subterráneas, etc. (1) La exacta influencia de cada uno estos factores se ocurre. Goldschmidt sostiene que las rocas de tipo quartzífero están siempre asociadas a magmas-tringlizóníctico, ricos en sodio. La influencia del agua absorbida por los sedimentos se manifestaría con la formación de muscovita en lugar de feldespato potásico, lo que provocaría la eliminación más rápida del potasio, con la consecuente concentración de sodio en el líquido residuo. Este líquido reemplazaría al potásico y el calcio de las rocas elusivas. De cualquier manera, lo que parece definitivamente establecido es que la formación de basaltos albíticos y otras rocas excepcionalmente ricas en sodio, es el resultado de un reemplazo, ya sea deutérico o biotérmal.

En cuanto a los quartzíferos que acompañan a las espilitas, se acepta corrientemente que pueden ser productos normales de la diferenciación de un magma tringlizónítico. En aquellas rocas, como se sabe existen feldespato potásico y plagioclasa albítica asociadas. Aunque bien, según nuestros conocimientos actuales acerca de la paragénesis de los feldespatos, es difícil aceptar que la línea evolutiva de la plagioclasa se extienda hasta muy cerca del extremo albítico en fase separada del feldespato potásico, sin entrar en solución sólida. (2) De sintéticamente, además, que aquella asociación de feldespatos alcalinos con prácticamente afusia de los quartzíferos, rocas consideradas generalmente como "paleovalóridas"). De todas estas consideraciones resulta muy probable que aún los quartzíferos den una particular composición mineralógica a un proceso de albítización: en otras palabras, serían de origen secundario, al menos en su mayor parte.

(2) Sobre este particular puede consultarse: Mountain, M., Miner. Mag., XX (1925) 325-45; Miner. Mag., XX (1935) 37-118; Earth T. F., Norisk Geol. Tider...
Las rocas de la Serie andesítica han sido formadas esencialmente en un ambiente continental, sin relación con áreas geocristalina ninguna. El complejo se apoya casi exclusivamente sobre el basamento cristalino damnado. Hacia el final de su período de formación, las afloraciones se depositaban en el fondo de un mar costero, según se deduce de la intercalación de sedimentos marinoterriarios en los niveles superiores del complejo. Esta intercalación, es de notar, no existe ya en el área de la hoja 41b. Es muy posible que la albitización no tenga necesariamente que ver con la incorporación de agua al magma. Las condiciones o factores parecen ser aún más locales, como lo demuestra el carácter local de las mismas rocas albitizadas del complejo. De todas maneras, el proceso debe estar íntimamente ligado al ciclo ofusivo infraterciario; las relaciones albitizantes pueden ser deutéricas en el sentido estricto, al menos, originadas en el mismo cuerpo magmático donde procedieron las rocas.
ROCAS PLUTONICAS DEL BASAMENTO

1 - Granito

(Lám. I, fig. 1)

Procedencia: En los cortes del camino a Bahía López en la extremidad SE del lago Moreno (Este).

Descripción macroscópica: Grano grueso (5 mm); el cuerpo verdeo y el feldeespato rosado aparecen en cantidad similar. La biotita es ocasional y de pequeñas dimensiones. La roca es regularmente fresca.

Descripción microscópica:

- Composición: Cuarzo (40%), ortoclase (30%), andesina (25%), biotita (5%).

- Textura: Granular, hipidiomorfa.

La ortoclase es cristal de color verde, pero con una vaga tendencia al idiomorfismo. Presenta a veces nódulos de Carlsbad, y abundantes pertitas venas que cruzan sin interpolación los planos de nódulo. Las venas de nódulo se mantienen, y a menudo se continúan fuera del cristal en pequeños individuos intersticiales. Existen también pertitas irregulares. La exfoliación de la ortoclase es poco avanzada.

- La plagiotrofa se encuentra en general mucho más alterada, con predominio de sericitas. Se une andesina ácida (en 32%), con nódulos delgados, y escasa zona amorf. Pelilespato muy rico en albita se encuentra sin estropio formando un fino margen o también como simple relleno intersticial que puede comunicarse en algunos casos con las pertitas de los vecinos individuos de ortoclase.

- La biotita se encuentra en gran parte reemplazada por sericitas, Micasas secundaria aparece general en agrupados de cristales relativamente grandes.

- La cristalización de un líquido residual rico en sodio se manifiesta también aquí por la presencia de albina intersticial...
particiones de reemplazo. Aporte hidrotermal potásico resultó en la parcial cristalización de la roca.

2 - Granito granoblástico

Fracturación: Orilla noreste del lago Trafal, a 120 km de Bariloche

Descripción macroscópica: Grano fino (1-2 mm), de color gris blanquecino, con un tinte rosado. Los elementos oscuros (biotita y zafiro de hierro) son más bien escasos, e irregularmente distribuidos, pues forman líneas o acículas, aunque la roca no muestra una textura gráfica evidente. Se observa cierta línea en indicada por un leve alargamiento de los cristales de cuarzo y por los agregados alargados de niquel. El aspecto de la roca es fresco.

Descripción microscópica:

Composición: Cuarzo (40%), microclino (30%), oligoclino (20%), biotita (15%), magnetita, apatita.

Textura: Granular, paraleotrisomorfa, granoblástico.

El cuarzo sobresale de los demás componentes por su tamaño. No presenta níveas, aunque se ve en cataclasis. Sus contornos son del tipo natural. El microclino, que muestra su típico maclado, aparece en parámetros más pequeños, con contornos irregulares, naturales. No hay mayor alteración en sus cristales.

El único componente leucocrático que presenta alguna tendencia al cataclismo es el oligoclino (An 10), que muestra un maclado regularmente repetido, secciones frescas, y un margen probablemente de recriatización, más ácido (An 1-3). Sus dimensiones son reajustadas a los del microclino.

La biotita se encuentra algo alterada. La magnetita es relativamente abundante, aparece en cristales subesféricos de
de cierto tamaño.

I - **Granito**

(Lám.I, fig.2 y Lám.II, fig.1)

Procedencia: Camino viejo desde Las Bayas al río Pichileufú, entre las cotas 1086 y 1227.

Descripción macroscópica: Color rosa verdoso claro, grano fino (1 mm), pobre en componentes oscuros. Los granos son irregulares, la fractura es relativamente fresca, aunque se observa algún agritamiento.

Descripción microscópica:

Composición: Cuarzo (40%), ortosa (35%), oligo-albita (20%), biotita, magnetita, apatita.

Textura: Granular paralotriómorfa, cataclástica, (parcialmente granoblástica).

Los contornos de los gramos son sumamente irregulares. La ortosa muestra grandes partitas lamináreas ("film perthite"), en donde el feldespato códico (An 6-7) presenta finas maclas polisintéticas. Otras veces las partitas son del tipo venoso. Es frecuente la continuidad de las partitas con cristales de albita-oligoclase. Las partitas lamináreas pueden ocupar gran parte del cristal. En algunos cristales se observa el maclado microclínico.

La plagioclase es oligo-albita, con finísimas maclas polisintéticas y ausencia de zonalidad, salvo algunas excepciones los cristales de ambos feldespatos son relativamente límpidos.

El movimiento intergranular ha provocado la pérdida del idiomorfismo de los cristales, aunque el tamaño de los mismos parece no haber disminuido mucho. La recristalización puede calcularse entre 10 y 20% y ha dado lugar en ciertos lugares a una débil textura poiquilooclástica.
Granito cataclásico

(Lám.II, fig.2)

Procedencia: Vallecito a la izquierda del río Pichileufú, en el campo de la estancia La Pilila, al WNE de la cota 1262.

Descripción macroscópica: Color verde-roja claro de grano grueso (0,5-1 cm), aunque los cristales muestran generalmente fragmentación. La roca no es fresca aunque la alteración no está muy avanzada aún: son comunes las grietas irregulares.

Descripción microscópica:

Composición: Cuarzo (40%), ortoclasa (micropertita) (40%), oligo-albita (15%), biotita, magnetita,apatita.

Textura: Granular, panalotriomorfa, cataclástica, débilmente granoblastica.

La ortoclasa presenta gruesas pertitas venosas, más bien irregulares, anastomosadas, que muestran a menudo finísimas maclas polisintéticas.

La plagioclásica (oligo-albita, An 10) aparece como cristales subeustálicas, más bien pequeños y escasos, muy finamente maculados y como un relleno intergranular que suele continuarase en las venas pertíticas. Este material intergranular está formado por menudos cristales que poseen (010) (evidenciados por las maclas) no sal a las paredes del espacio que ocupan. La plagioclásica que forma tanto el relleno intergranular como las pertitas es algo más sódico que los cristales mayores, pudiendo llegar a oligo-albita. Plagioclásica de esta composición forma también las zonas más exteriores de aquellos cristales. Ambos feldespatos, pero especialmente el potásico, presentan una cierta turbidez, provocada por la caolinitización.

El cuarzo muestra evidentes señales de cataclasis.
Los contornos de todos los cristales parecen demostrar un proceso de cataclasis y recristalización parcial. Es posible que la plagioclasa haya actuado en cierto modo como un lubricante del movimiento intergranular, habiendo sufrido luego recristalización post-tectónica.

5 - Poíffido granítico
(Lám. III, fig. 1)

Procedencia: Margen derecha del río Villegas, inmediatamente abajo del campamento volante al pie de la subida a la Pampa de las Mellizas.

Descripción macroscópica: Grano grueso a mediano, variable. Color claro. El feldespato predomina y comunica su color a la roca, los minerales oscuros son escasos, pequeños, y de tono verdoso. Existe algunas cavidades microlíticas de tamaño reducido.

Descripción microscópica:

Composición: Micropertita (65%), cuarzo (25%), albina (5%), magnetita, apatita.

Textura: Porfírica; fenocristales de feldespato; pasta microgranítica gruesa, panalotriomorphic. No existe textura micrográfica.

Los fenocristales de feldespato alcalino son irregulares con vaga tendencia al idiomorfismo. Por lo común sus márgenes están en asociación microgranítica con el cuarzo. La proporción de albita en la micropertita es grande, alrededor de 1/3 del total, y se presenta en forma de pertita de tipo variado (filamentosas, bandeada plumosas, pero especialmente en áreas irregulares), orientadas preferentemente paralelas al lápírinocleía. El feldespato sódico muestra en algunos casos nacelas polisintéticas. Las pertitas irregulares
se anastomosan frecuentemente, y su distribución es homogénea en todo el cuerpo de los cristales. El intercrecimiento en damero ("chess-board") es frecuente. La microperitita de la pasta muestra caracteres semejantes.

Albita se presenta además en escasos individuos aislados, finamente esmaclados y preferentemente como componente de la pasta. Su composición es An 2-4.

Algunos pseudomorfos de sericita indican la primitiva plagiocláster, cuyas macetas están todavía indicadas por la orientación de las laminillas micácneas. Estos pseudomorfos son de tamaño semejante al de los fenocristales de microperitita (2-3 mm).

La biotita aparece en pequeños cristales o agregados parcialmente cloritizados, y asociados con gránulos de magnetita. Se observan además algunos agregados pseudomorfos de sericita.

El origen del intercrecimiento pertítico es, como siempre, difícil de discernir. El tipo de las pertitas parece indicar con cierta seguridad, sin embargo, la existencia de reemplazo en gran escala. La abundancia de las mismas apunta en el mismo sentido. No sería difícil empero, que parte de los intercrecimientos (los de tipo filamentososo, por ejemplo), sean debido a exsolución. En verdad, lo difícil es concebir que este proceso no haya tenido lugar nunca en pequeña escala.

6 - Adamellita

Procedencia: Valle del arroyo que baja desde el cerro de La Ventana al Arroyo Nireco.

Descripción macroscópica: Grano mediano a fino; regular cantidad de elementos oscuros, que marcan una débil foliación. El feldespato, de color gris blanquecino, algo verdeño, se encuentra muy fresco.
Descripción microscópica:

Composición: Plagioclasa (35%), cuarzo (30%), ortoclasa (25%), biotita (8%), magnetita, apatita.

Textura: Granular hipidiomorfa, cataclástica.

La granulación de esta roca ha sido intensa, aunque no lo suficiente para eliminar el idiomorfismo de la plagioclasa. Esta se presenta en cristales débilmente alterados, con zonas exteriores de oligoclasa ácida, siendo en su mayor parte andesina ácida. La ortoclasa es totalmente intersticial, lúpida, sin reemplazo parítico. El cuarzo es el que más ha sufrido los efectos de la presión, resultando en una abundante granulación. La biotita, en parte cloritizada, deja ver a menudo flexuras debidas a la deformación de la roca.

Adamellite

Procedencia: Orilla del Lago Ercelo, a 6 km de Roca Malén.

Descripción macroscópica: Roca gris clara, salpicada de cristales de biotita, grano mediano, aspecto muy fresco.

Descripción microscópica:

Composición: Plagioclasa (30%), feldespatos potásicos (cuarzo (30%), biotita (8%), magnetita, apatita.

Textura: Granular, hipidiomorfa.

La plagioclasa (oligoclasa básica An 28-30) es relativamente poco alterada; solo algunos núcleos presentan reemplazo...
zado en sericitita. La zonalidad se manifiesta comúnmente en un núcleo separado más o menos natamente de un ancho margen algo más albítico y por lo común menos alterado. En ciertas ocasiones la zonalidad es recurrante. El maclado suele ser fino; las maclas se pierden en muchos casos al entrar a la zona exterior. Si bien la forma general de la plagioclase tiende a cuadrada, sus contornos son a veces muy irregulares, debido tal vez al reemplazo de los cristales (de feldespat potáxico) adyacentes. El feldespato potáxico se halla apreciablemente catalinizado; su extinción es irregular, sugiriendo vagamente un maclado microclínico, pero que pueden deberse a deformación.

El ángulo de los ejes ópticos es muy próximo a 90°, lo cual indica ría microclino. Se observan también partitas muy regulares, filiformes, cortas, que se asechan hacia los extremos, y que son muy posiblemente producto de exfoliación. Su orientación es siempre más o menos paralela a (100). Existen además partitas muy finas irregulares, que se ensanchan localmente a veces mostrando el maclado albítico. Estas partitas, que no poseen un contorno definido como las anteriores, son seguramente resultado del reemplazo. La forma de los cristales de microclino es muy irregular, aunque no propiamente intersticial. El cuarzo muestra una visible extinción ondulada o fragmentaria. La biotita es generalmente fresca, aunque algunos de los cristales presentan reemplazo parcial o total por clorita y algo de epidoto. También hay algunas lentes de prehnita entre sus inmin llas.

5 - Adamellite

Procedencia: Puerto Bient, Lago Manuel Huasi

Descripción microscópica: Es una roca de grano medianamente grueso, sobresaliendo los individuos de ortoclasa, de 5 a 10 mm, límpidos, de tinte verdezco, y con maclas de carlabad. Los elementos férreos
son más bien escasas. La roca es fresca, y su tono general es gris claro.

Descripción microscópica:

- **Composición:** Ortoclasa (35%), plagioclasa (30%), cuarzo (20%), biotita (10%), hornblenda (4%), magnetita, apatita, zircón.

- **Textura:** Granular hipidioclasas, algo porfirolida.

La ortoclasa se presenta en cristales grandes, subcristales, y más pequeños de hábito anacrado. Todos los cristales presentan, generalmente, partitas de reemplazo, venosas, que cruzan el cristal paralelamente a (100). Las venas son bastante gruesas y bien delimitadas. En algunos se alcanzan a ver venitas filiformes, delgadas, lineales, igualmente paralelas a (100) y muy rectas que son posiblemente producto de exfoliación. Algunas partitas de reemplazo son de tipo "macular" (patch), mostrándose oscuro en sus manchas. La alteración del feldespatito potásico consiste en una débil c完aización. La plagioclasa es una andesita ácida (An 32-34) en su mayor parte, pasando marginalmente a oligoclásica o albítica. El manto más exterior, a veces muy delgado y albítico, reemplaza al feldespatito potásico vecino, y a veces se prolonga penetrando en su interior; con frecuencia la albita forma cristalitos intercalares distribuidos a lo largo del contacto entre ambos feldespatos.

Las zonas de la plagioclasa son a veces recurrentes. Su estado de conservación es generalmente bueno. La biotita es muy picocroica (Z = Y = pardo negruzco, X = nevirillo pálido). La hornblenda es verde pálida, con picocroismos relativamente débil.
9 - Adamellita

Procedencia: Orilla meridional del lago Moreno (Este), cerca del límite occidental de la Hoja San Carlos de Bariloche.

Descripción macroscópica: Color gris, rosado pálido, aspecto fresco. El feldespato le comunica un leve tono acaramelado. Grano fino (1-2mm), regular abundancia de elementos oscuros.

Descripción microscópica:

- **Composición:** Cuarzo (40%), ortoclase (25%), plagioclase (20%), biotita (12%), magnetita.
- **Textura:** Granular, hipidiomorfa, algo porfírica.

Los cristales de plagioclase sobresalen del resto por su tamaño, aparte de su idiomorfismo. Abundan sin embargo, los cristales pequeños. Se hallan siempre marcadamente reemplazados por sericitita y calcita, al menos en sus núcleos. La limpieza de sus márgenes indica una apreciable acidez. En efecto, mientras que la mayor parte de cada individuo es oligoclase básica (An 24), las zonas exteriores pasan a albita.

La ortoclase, que es alotriomorfa (a veces subedral), aunque no intersticial, muestra venas porfíticas irregulares distribuidas. La ortosa presenta una leve caolinitización. La albite ha cristalizado además como pequeños individuos intersticiales, macizados, que reemplazando parcialmente los márgenes del feldespato potárico. Ellos se continúan a menudo en las perititas. La biotita se encuentra en su mayor parte cloritizada.

Otra vez aquí se comprueba la cristalización deutérica del feldespato cádico. Aparentemente el cuarzo y la ortoclase hayan cristalizado, al menos en parte, de una mezcla católica, aunque no se observan típicos intercristales.

10 - Adamellita

(Lam.IV, fig. 1)

Procedencia: Camino de Trafal a lago Espejo a 145 km. de Bariloche y a 4 km. de Ruta Malén.
Descripción macroscópica: Es una roca regularmente frálea, grana de grano fino, con regular proporción de ferromagnéticos. Son características de esta roca las superficies de clivaje que se extienden a menudo por más de 1 cm y que corresponden, según lo demuestra la observación microscópica a grandes cristales de ortoclase intersticiales que incluye a varios cristales de plagioclasa y fárricos.

Descripción microscópica:

Composición: Ortoclasa (30%), plagioclasa (30%), cuarzo (30%), biotita (7%), hornblenda (2%), etc. Estas partículas muestran a menudo reemplazo parcial por titanita.

La plagioclasa es idiomorfa, y marcadamente zonal. La composición, en un mismo individuo, varía entre andesina (An 42) y albita. Alteración en asertiva y clasiina es frecuente, y en general se encuentra concentrada en los núcleos, en donde puede ser profusa. Estos núcleos andesínicos muestran a menudo reemplazo parcial por albita. El medio está bien desarrollado. Las ortoclasa se presenta en grandes cristales que encierran a los de plagioclasa, etc. Muestra abundantes y finas partículas en forma de venas, paralelas a (100), producto de reemplazo albitico. La alternación clasiina es suave.

La biotita presenta alguna cioritización, y a veces reemplazo por titanita. Esta última que es probablemente dentaria, reemplaza especialmente a la hornblenda.

La zonalidad de la plagioclasa indica una fuerte fracciónación. El producto final fue el residuo albitico que formó las partitas y reemplazó parte de la misma plagioclasa. Algunas veces las partitas muestran corrosión con las zonas más exteriores, las que suele destacarse netamente de las zonas interiores por un límite neto.
11 - Adamellite

Procedencia: Sierra al NE de Torrentegui (Lago Guillelmo).

Descripción macroscópica: Roca granular (0,5 - 1 cm), de tono gris claro, regular proporción de minerales oscuros. El aspecto de la roca es fresco.

Descripción microscópica:

Composición: Cuarzo (35%), ortoclase (28%), oligoclasa (28%), biotita, muscovita, magnetita, apatita.

Textura: Hipidimorfía, granular (monzonítica)(8%)

Entre los minerales claros, la plagioclase (An 32) es el único en presentar contornos idiomorfos. Su masticado es normal, y acusa a veces un grado avanzado de alteración en sericitas, especialmente en las zonas interiores. Sus contornos irregulares indican reemplazo parcial de ortosa por parte de la zona albítica marginal.

La ortoclase forma alrededor del 30% de la roca. Junto con el cuarzo, ocupa los espacios sin adoptar forma propia. Carece en general de intercambios pertípicos. El cuarzo ocupa cerca del 20% del total.

La biotita presenta alteración, consistente en simple atenuación del pleocroismo o cloritización más o menos completa, acompañada siempre de un marcado reemplazo por prehnita que se presenta en lentes ubicadas en los planos de clivaje.

12 - Adamellite
(Lám. III, fig.2)

Procedencia: Portezuelo en el valle del arroyo de la península (Lago Guillelmo) y la cabecera del río Mirihuau, 9900m al NNE de Torrentegui.
Descripción macroscópica: Gris claro, con un tinte rosado en las superficies alteradas. Cráneo mediano a grueso (2 a 3 mm); aspecto fresco.

Descripción microscópica:

Composición: Microclino (30%), cuarzo (30%), oligoclina, albita (30%), biotita (10%), anotita magnetita.

Textura: Granular hipidomórfica, muy señal de un principio de granulación tectónica.

El microclino es en su mayor parte anedral, aunque no intersticial. Su estado de conservación es bueno; el anclado en malla a menudo ocupa sólo una parte de los individuos. Partitas (de reemplazo?) irregulares, del tipo filamentozo ("string", stringlet) y pelicular ("film"), son muy frecuentes, y se disponen paralelamente a (100).

Los cristales de plagioclasa (An 10-12) son subhedral, relativamente pequeños, escasamente alterados y muestran un anclado fino y abundante. Existe además, en algunos cristales, anormalidad recurrencia revertida. El cuarzo deja notar los efectos de fuertes presiones. La extinción ondulada y el dibujo intrínseco de sus contornos indican un proceso de milonitización incipiente. Los cristales de alba alojan numerosos cristales de zircon, con astíticas aureolas.

Un detalle interesante lo constituyen numerosos cristalitos tabulares de albita, aprestados entre sí formando un mosaico, que reemplazan gran parte de algunos cristales de microclino. Por otra parte, cristalitos análogos de albita se insinúan con mucha frecuencia entre los individuos de microclino y plagioclasa.
13 - Granodiorita

Procedencia: Ladera izquierda del río Villegas. 3 km. aguas abajo del campamento situado al pie de la subida a la Pampa de las Hellizas.

Descripción macroacónítica: Es una roca de aspecto fresco, de color gris verdeso, oscurecida por el abundante contenido de minerales oscuros. Grano mediano (1-3 mm).

Descripción microacónítica:

- **Composición:** Andesina (60%), cuarzo (15%), ortoclasa (8%), hornblenda (7%), biotita (7%), titanita, magnetita, anatóita.

- **Textura:** Granular hipidiomórfica (monzonítica).

Los cristales de plagioclasa son idiomorfos, bien modificados y poseen zonas que van desde andesina básica a oligoclasa, albita. El promedio oscila en andesina media (An 40). La alteración, especialmente en material sericitizado, está regularmente avanzada. La ortosa, a la que la calcinitización le da a la característica coloración pardoazul, aparece rellenanod intersticios. Del mismo modo se diageniza el cuarzo. El anfibol es una hornblenda común (z=paro verde, x=paro amarillo). Macetas según (100) son frecuentes, a veces polisintéticas. Chloritización incipiente. La mica se halla en su mayor parte chloritizada. El reemplazo por prehnita, a lo largo de los clivajes es también abundante.

14 - Granodiorita

Procedencia: Peulla (Lago Todos Los Santos).

Descripción macroacónítica: Es una roca fresca, con una masa gris blanquecina cuarzo-feldespática ampliada de numerosos cristales de biotita y hornblenda, grano mediano a fino. Finas veces apliti
cas atraviesan la roca.

Descripción micrónómica:

Composición: Plagioclase (45%), cuarzo (20%), biotita (15%), ortoclasa (8%), hornblenda (10%), magnetita, clinopiroxeno, actinolita

Textura: Granular, hinchamiento, porfirídea.

Los cristales de plagioclase, tabulares, muy abundantes, se encuentran cementados por cristales muy irregulares de cuarzo y ortoclasa; el tamaño de estos cristales es alrededor de la mitad de aquellos de plagioclasa, los cuales miden en promedio poco más de un milímetro. La composición de la plagioclase es alrededor de An 50 (laborador-andesina). Frequentemente existe un margen más ácido, que puede llegar a oligoclasa básica, aunque en general difiere poco del núcleo. Muchos individuos no presentan prácticamente zonalidad, mientras que otros, los menos, la muestran de carácter recurrente. Los ecoláminos están muy bien desarrollados; en cuanto a su alteración, es preferente caolínica y poco extendida. La ortoclase se presenta en individuo deformes que se adaptan perfectamente a los intersticios. Su estado de conservación es notablemente bueno. El cuarzo aparece con hábito asaéjante, pero tiene una mayor tendencia a formar individuos equidiimensionales. La hornblenda es un tipo verde co án, perfectamente fresca, de forma generalmente subedrada pero con los contornos muy irregulares debido a penetración de los cristales de cuarzo y feldespato vecinos. Su pseudocristal es: Z verde pasto; Y: idem, algo más oscuro; X amarillo verdoso. La biotita se encuentra en forma de cristales poco más largos (en el sentido del clivaje) que anchos, pequeños, que constituyen agregados de forma alargada. El pseudocristal de la biotita
es muy fuerte; Z=amarillo negruzco, X=amarillo pálido. Algunos cristales de clinopiroxeno, de naturaleza en apariencia diopside,
ca, se presentan en estrecha asociación con el anfibol, sugiriendo una relación de reacción entre ambos. El piroxeno, que es inco
loro, de ángulo 2 y (+) 62º y 2 G=33º, aparece a veces encerrado
dentro del anfibol. La magnetita se presenta en cristales relativo-
mente grandes, subcubridas.

15 - Granodiorita

Procedencia: Extremidad occidental del Lago Traful, km. 128 de San Carlos de Bariloche.

Descripción macroscópica: Grano grueso a mediano (2-4mm); el fel-
desmato es blanco, el cuarzo incoloro con tinte verdeo. Las lam-
nillas de biotita y los prismas de hornblenda forman alrededor de
fra de la roca. Su estado de conservación es bueno, salvo en las su-
pertícieas expuestas.

Descripción microscópica:

Composition: Plagioclasa (40%), cuarzo (25%), biotita
(12%), hornblenda (10%), ortoclasa (5%),
magnetita, anatita, titanita.

Textura: Granular, hipidiomorfa (monzonítica)

La plagioclasa (oligo-andesina) se presenta en cristales
en los márgenes, en donde puede pasar a oligo-albita. Estos
márgenes muestran haber reemplazado parte de la ortoclasa, inclu-
yendo a veces simerquita. La ortoclasa es puramente intersticial.
La biotita está en parte reemplazada por clorita, epidoto o pranalita. Esta última forma los típicos agregados lenticulares que apartan las hojuelas de mica. La hornblenda (Z C=10°) está en general mejor conservada; es un tipo de hornblenda pará común, con nacelas según (100), idiomorfa. Muestra en parte decoloración, sin pérdida de birefringencia (tramolitización).

l6 - Granodiorita

Procedencia: Extremo septentrional del Lago Maccardi, en los despoblados de la cantera.

Descripción microscópica: Roca de color gris, rica en minerales de cuarzo, granito fino (0,5-0,8 mm), aspecto muy fresco.

Descripción microscópica:

- Composición: Plagioclasa (50%), cuarzo (25%), ortoclasa (20%), biotita, (hornblenda), apatita, magnetita.

- Textura: Granular, níplidiomorfa.

El grano de la roca indica una cristalización hipabiasal. La plagioclasa presenta contornos euecles, nacelas bien desarrolladas y zonalidad muy marcada. Su composición varía zonalmente del labradorita ácido (An 50) a oligoandesina (An 30). El cuarzo y la ortoclasa son enternamente intersticiales. Esta última demuestra haber cristalizado de un líquido residual ya que en ciertos casos ocupa grietas que cortan los minerales ya consolidados. En algunos de sus cristales se insinúa un borroso anclado microclínico. La plagioclasa aparece relativamente fresca aunque en algunos cristales, especialmente a ambos lados de las grietas ocupadas por ortosa, existe un avanzado reemplazo por acicrita. En las venitas de ortosa mencionadas se hallan incluidos algunos típicos agregados.
de laminillas "apiladas" de cuolinita. La biotita se halla extensive-
mente reemplazada por clorita y prehnita, esta última formando los
característicos lentes entre los planos de clivaje.

17 - Granodiorita

Procedencia: Cabecera del valle del puesto del R.Bock a la iz-
quiera del río Villegas, muy cerca del límite meridional de la
hoja "San Carlos de Bariloche".

Descripción macroscópica: Color gris claro, aspecto fresco. Grano
mediano a grueso (3-7 mm).

Descripción microscópica:

- **Composición:** Plagioclasa (35%), cuarzo (30%), microclí-
 no (25%), biotita (5%), magnetita, anati-
 ta, titanita.

- **Textura:** Granular hipidiomorfa (monzonítica).

La plagioclasa es el único mineral fálico que muestra
idiomorfismo. Las radios son numerosas; y la zonalidad muy marcada,
variando la composición entre plagioclasa básica y albita. El núcleo
de los cristales se encuentra a menudo muy alterado a sericita y
cuolinita. Las zonas son a veces recurrentes.

El falsamento potásico ocupa espacios intersticiales, al
igual que el cuarzo. Presenta el maculado típico del microclino,
pero no en todos los individuos. Existen no raramente partitas fil-
iformes, e intercruceientos miraquíticos en los márgenes algi-
ticos de las plagioclasas. La formación de estas zonas sódicas ha
tenido lugar mediante la cristalización del líquido residual que
dominantemente sódico, que ha reemplazado parte de la ortosa,
formándose así las miraquítas y los contactos tónicos de reesca-
zo ("carías"). El falsamento potásico, en una etapa algo anterior.
ha reemplazado alguna parte de la plagioclase más básica, también
da asaales de haberse introducido entre los olivajes más exterio-
res de algunas cristales de biotita, en parte reemplazando, en par-
te rechazando hacia ambos lados las laminillas.

16 - Granodiorita

(Lm.IV, fig.2)

Procedencia: Valle del río Bock, cerca de 1600 m S de la cota 1516 (a la izquierda del Río Villegas, en la margen dere-
cha del arroyo).

Descripción macroscópica: Roca de color gris claro, de grano fino
a mediano. Se observa, como producto de alteración de los minerale-
es fósicos clorita y algo de epidoto. Por lo demás, la roca es de
aspecto fresco.

Descripción microscópica:

Composición: Plagioclase (50%), cuarzo (25%), microclino
ne (20%), biotita, hornblenda, titanita, mag-
etita, apatita.

Textura: Granular hipidiodormítica (monzonítica).

La plagioclase (andesína ácida (An 32), pasando a olig-
clasa en las márgenes, y en casos extremos a oligoclasa-albita), e
idiomorfía, con máscaras frecuentes y con una zonalidad bien desarro-
llada, siendo a menudo recurrente. Aunque en general sus cristales
son límpidos, algunos presentan sus núcleos fuertemente reemplaza-
dos por sericitas y algo de epidoto.

El microclino y el cuarzo han cristalizado tardíamente,
centrándose entre sí a los cristales, de plagioclase. Los contornos
de esta última muestran, sin embargo, en algunos casos, una típica
relación de reemplazo con respecto al microclino, consistente en forma lobadas (caries), aunque no se advierte mirasquitas. Esto sucede especialmente cuando el márgen es claramente albítico. De nuevo se advierten aquí pruebas de la cristalización póstuma (dentalónica) del feldespato ácido.

La biotita y la hornblenda se encuentran, parcialmente cloritizadas. La titánita es también un producto de consolidación póstuma, como lo indican sus contornos angulares.

19 - Granodiorita

Procedencia: Cresta del cerro al 3 de R. Rock (río Villegas).

Descripción macroscópica: Es una roca de grano mediano a fino, de color gris verdoso, debido tanto al cuarzo y al feldespato, que presentan brillo vitreo, como a la biotita y al anfibol, que son regularmente abundantes. La roca muestra un buen estado de preservación.

Descripción microscópica:

Composición: Andesina (60%), cuarzo (15%), ortosa (10%), hornblenda, biotita (18%), titánita, magnetita, anatita.

Textura: Granular, hipidiasmorfa.

La plagioclasa (An 45) es en - o esmárald, poco alterada, con finas remallas poliunitáticas, y presenta generalmente un márgen sucumbente albítico (oligoclina media o ácida). La ortoclasa es alatromorfa y muestra pertitas irregulares, producto de reemplazo. El márgen ácido de la plagioclasa es el producto de la cristalización del líquido residual, y además ha reemplazado parte del feldespato potásico, no sólo en pertitas, sino en grandes áreas.
También la andesina ha sufrido en algunos casos reemplazo por el líquido albítico. Existen además intercristales micrograníticos de cuarzo y ortoclase.

La hornblenda se presenta arenular, parcialmente decolorada y reemplazada por epidoto. La biotita deja ver una avanzada cloritización.

29 - Granodiorita

Procedencia: Contrafuerte a la cresta del río Villegas, cerca de 500 m al SSE de R. Bock.

Descripción macroscópica: Grano mediano (2-4 mm), color gris claro, ligeramente rosado. Los minerales secundarios son regularmente abundantes y alcanzan a veces a 5 mm, mostrando cierto idiomorfismo.

Descripción microscópica:

Composition: Plagioclasa (40%), cuarzo (25%), ortoclase (micropertita) (20%)(biotita), magnetita.

Textura: Granular, hipidomorfa.

La plagioclasa (andesina An37) es en general, subhedral, y muestra una marcada zonalidad (en ocasiones recurrente) variando en los casos extremos entre andesina y oligoclasa ácida. El vaciado es abundante, y su estado de conservación relativamente bueno.

El feldespato potásico presenta un abundante intercristal intercristal pertítico del tipo filamentosos; son hilos delgados que atraviesan rectamente todo el cristal, aparentemente paralelos al primer planoico, y que llegan muy cerca del borde. Estos filamentos se anastomosan muy a menudo, y también pasan a áreas más irregulares, estas pertitas se deben innudablemente a expulsión. Su
gradual transición a tipos más irregulares es significativa. Existen además, aunque en menor abundancia, partítes de forma más irregular, de contorno siempre imprecisos, a veces en áreas que dejan ver nucleado poliesistantico. Se trata aquí, evidentemente, de reemplazo. En muchos casos se puede trazar su continuidad con un cristal de plagioclasa.

La biotita se encuentra parcialmente cloritizada.

21 - Granodiorita

Procedencia: Cresta Divisoria del valle medio del río Pichileufú y la cabecera del río Chubut.

Descripción macroscópica: Color gris oscuro, gran abundancia de minerales oscuros (alrededor de 20%), que se concentran a veces en zonas de grano muy fino. El grano de la roca es fino (1-2 mm) y su estado de conservación bueno. La mica y la hornblenda muestran sus colores normales. El feldespato es de color blanco vitreco, y el cuarzo es verdoso.

Descripción microscópica:

Composición: Andesina (50%), cuarzo (23%), ortoclase (15%), biotita, hornblenda (10%), apatita, magnetita.

Textura: Granular, hipidíomorfa (monocristalina).

Existe tendencia perifrística.

La plagioclasa (An 44) es comúnmente idiomorfa; su márgen de es normal y su zonalidad muy marcada, a veces recurrente. En sus márgenes pasa a mafito a oligoclasa ácida. Abundante reemplazo irregular por sericitas y algo de epidoto, calcinita y esceso
clinozoisita.

La ortosa se presenta en cristales de relativa magnitud que se extienden llenando intersticios y englobando cristales de plagioclasa, etc.

El anfíbol es una hornblenda común, pleocroico en: Z-Y-verde botella, X-amarillo parduzco. Es común encontrarla decolorada en áreas irregulares; en casos extremos, fibras, paralelas a e adquieren extensión recta, en su pasaje a clorita. También existen algún reemplazo por epidoto.

Los cristales de biotita, algo más numerosos que los de anfíbol, se presentan en gran parte cloritizados.

22 - Granodiorita

Procedencia: Cresta del cerro al sur del campamento volante situado al pie de la subida a la Pampa de las Mellizas, cerca del contacto con la Serie Andeaítica.

Descripción macroscópica: Es una roca de color gris de fractura fresca relativamente rica en minerales oscuros. El feldespato es gris blanquecino, algo verde; la hornblenda es pardo verdosa oscura.

Descripción microscópica:

Composición: Plagioclasa (50%), cuarzo (17%), ortoclásica (15%), hornblenda (10%), biotita (5%), magnetita, espatita, titanita.

Textura: Granular, hipidomorfa (monzonítica).

La plagioclasa presenta una marcada turbidez debida al reemplazo por cuolinita y sericita. Los cristales son en 5 sub-
medulares, algo zonales y provistos de abundantes maclas polisintéticas. Su composición es la de una andesina ácida (An 33-35).

La ortoclase ocurre como una mesostasia que ocupa los intersticios y engloba a los cristales de plagioclasa más pequeños. Su estado de alteración caolinítica la comunica una turbidez de color castaño. A veces muestra algún reemplazo por albíta.

La hornblenda fuertemente coloreada y pleocroica en verde pardo, Y=pardo levemente rojizo, X=amarillo verdoso; Y>X. En algunos cristales se observan indicios de cloritización. Son comunes las maclas según (100).

La biotita aparece en su mayor parte reemplazado por clorita y prehnita.

31 - Granodiorita

Procedencia: Al lado del puente sobre el A° Castillo; camino desde la estancia Jona al paso del Cachup (Lago Manuel Huapi).

Descripción macroscópica: Roja de color gris claro; grano mediano (2-3 mm). El feldespato es en parte translúcido, en parte opaco, con signos de alteración. La biotita es de tono muy subido. La roca es relativamente fresca, aunque muestra cierta tendencia a desgranarse.

Descripción microscópica:

Composición: Plagioclasa (40%), cuarzo (30%), ortoclase (20%), biotita, hornblenda (5%), magnetita, apatita.

Textura: Granular, hipidiomorfa (monzonítica).
La plagioclase que oscila en los núcleos de oligo-andesina a andesina básica (An 30-38) muestra zonas periféricas muy ricas en albita. Los cristales son cuadrados, poseen mazaclado fino, algo irregular y alteración variable en sericitita y caolinita. La ortoclasa es enteramente interacial. Lleva generalmente algunas venas pertínicas de reemplazo. A su vez, las zonas albiticas de las plagioclases, que han reemplazado parte de la ortoclasa, presentan miramosquitas. La biotita es fuertemente pleocromica: Z =pardo muy oscuro X =amarillo rojizo. Muestra a menudo reemplazo por clorita. La hornblenda es mucho menos frecuente, y de menor tamaño.

28 - Granodiorita

Procedencia: Debajo de las brechas basales de la Serie Andesítica, orilla del Lago Gutiérrez, al pie del Cº de la Ventana.

Descripción macroscópica: Color verde claro, debido a la presencia de apreciable cantidad de clorita y epidoto. El grano es fino (1-2 mm), con regular cantidad de elementos oscuros, en gran parte alterados, y cristales de cuarzo que pueden alcanzar varios milímetros. El aspecto de la muestra es poco fresco.

Descripción microscópica:

Composición: Plagioclase (50%), cuarzo (25%), biotita (20%), magnetita, apatita.

Textura: Granular, hipidiomórfica.

Los cristales de cuarzo muestran señales de intensa cataclasis, con natura de gran parte de los cristales, dando origen a lo que al cuarzo respecta, una verdadera textura de mortero, con apreciable recristalización.
Fig. 7. - Granodiorita, (17). p, plagioclasa; f, feldespato potásico; c, cuarzo. Nótese la penetración del margen albítico de la plagioclasa en el feldespato potásico. Hay también partitas de reemplazo.
La plagioclasa es albita, y presenta un casi total reemplazo por sericita y algo de calcita. Muy pocos de ellos dejan ver todavía sus máculas, que permiten su identificación. Su hábito es idiomorfo.

Prácticamente todos los cristales de biotita han alterado en clorita (y sericita), y en parte disgregados y dispersos en la roca.

Es evidente de la milonitización parcial de la roca ha estado relacionada con la sericitización y descalcificación de la plagioclasa, y la alteración de la biotita. Es posible que existiera algo de feldespato potásico intersticial, ahora irreconocible.

25 - Pórfido granodiorítico
(Fig.8)

Procedencia: Extremidad meridional del cordón de la Veranada, en la_pickada desde Torrontegüe a R.Bock, a la derecha del río Villaga.

Descripción macroscópica: Grano fino (0,5 mm) color gris verdoso claro; el feldespato aparece en cristales idiomorfos, bien conservados entre los que se distinguen numerosos puntos oscuros de mica, que además se presentan en aislados fenocristales de poco tamaño. A simple vista es difícil distinguir la pasta microgranítica de los fenocristales.

Descripción microscópica:

Composición: Plagioclasa (65%), cuarzo (20%), ortosa (10%), biotita, magnetita, apatita.

Textura: Porfiríca, pasta microgranítica, poco abundante.

La plagioclasa es variable en composición, tanto so-
Fig. 3.- Pórrido granodiorítico (25). p, plagioclaza; q, cuarzo; o, ortoclaza; b, biotita. Gránulos de cuarzo englobados en el margen albítico de la plagioclaza.
nalmente como de un individuo a otro. En los cristales zonales a-
quella varía de oligoclase básica (An 45) a oligoclase, llegando
a veces hasta albita, siendo el márgen códico de considerable an-
chura; las zonas son muy surcadas, no así las micals, que son re-
lativamente escasas, como se deduce de una roca de esta textu-
ra. La plagioclase es idiomorfa, pero sus contornos muestran un
 dibujo complicado por penetración entre los pequeños y rodeadores
cristales de cuarzo (y eventualmente ortoclase), a los cuales lle-
ga a envolverse e incorporar a menudo. Aquí nos hallamos de nuevo ante
 evidencia de una etapa de cristalización de la plagioclase suavemen-
te extensa, que abarca por entero el proceso de consolidación de la
roca. La forma regular de los cristales de cuarzo indica que no se
trata aquí de un reemplazo por éste de la plagioclase. La ortoclasa por
su parte, es perfectamente intersticial. El reemplazo de la plagi-
oclasa por sericitita está regularmente avanzado. La biotita se halla
en buena parte alterada en clorita y epidoto.

26 - Granodiorita

Procedencia: Extracción austral del contrafuerte a la derecha del
río Villegas, al NNO del río Rock, en la crestante.

Descripción macroscópica: Grano fino a mediano (1-2 mm); el feldes-
pato y el cuarzo poseen un tinte verdeáceo que comunican a la roca;
la mica aparece en láminillas negras en el centro y amarillentadas en
los márgenes, aunque en general está bien conservado, así como la
hornblenda. La fractura de la roca es fresca.

Descripción microscópica:

Composición: Plagioclase (40%), cuarzo (28%), ortoclase
(20%), hornblenda, biotita (13%), magnetis-
ta, apatita.
Texture: Granular hipidiomorfa (monzonítica).

El feldespato calcáreo es idiomorfo, relativamente franco, bien maculado, y muy zonal. Su composición es An 45 (en algunos casos llega a An 55) pasando rápidamente en los márgenes a oligoclase. Es frecuente el reemplazo de pequeñas áreas de su parte central por albita. Esta molécula predomina casi en absoluto en delgados márgenes de algunos cristales de plagioclasa, que muestran al mismo tiempo relaciones de reemplazo respecto a la ortosan. Esta se distingue por su característica alteración granular fina calcinitica; presenta además delgadas partitas filamentosas.

La hornblenda, que predomina sobre la biotita, es la variación común paraco-verdeazul, parcialmente descolorada. Su ángulo 2V(−) se aproxima al 90°. La mica se encuentra muy cloritizada.

27 - Granodiorita

Procedencia: Márge izquierda del río Villogas, en el límite muestral de la Hoja "San Carlos de Bariloche".

Descripción macroscópica: Grano fino a mediano (1-2mm) color verde grisáceo. Feldespato de color gris rojizo, verdoso y aurícol verde oscuro, aspecto algo alterado.

Descripción microscópica: Igual a la muestra nº 26. Existen venas delgadas de feldespato potásico, que se distinguen de los cristales de ortosan que atraviesan por su mayor lógidez.
Procedencia: Promontorio al este de puerto Sábana, 1400 metros al SE de la Estación Huemul.

Descripción macroscópica: Es una roca rica en elementos oscuros que le dan una tonalidad gris medianamente intensa. En algunas regiones aquellas se encuentran concentradas, poseyendo granos más fines. El grano es mediano a grueso (2-4mm). El aspecto de la roca es relativamente liso.

Descripción microscópica:

Composición: Labradorita (45%), cuarzo (20%), biotita (20%), hornblenda (5%), apatita, zircón.

Textura: Granular hipidiomórfica, parcialmente granoblástico.

La plagioclase, notablemente básica (labrador-andesina), que comunmente es idiomórfica y muestra un muy fino abundante maculado y polisintético. Sus secciones son frescas, salvo alguno que otro cristal profundamente reemplazado en su núcleo por esclinita y sericita. La zonalidad está poco marcada.

La biotita presenta algún reemplazo por clorita y pretinite. Su forma es a menudo irregular (intersticial).

El cuarzo muestra signos evidentes de cataclasis. Sus contornos suturales que le proporciona una textura granoblástica o poliquilobástica, se debe seguramente a recristalización bajo presión (y temperatura). Es de notar que la plagioclase, a pesar de ser en general idiomórfica, participa en algo de las texturas de recristalización.
29 - Tonalita hornbländica
(fig. 9)

Procedencia: Vallecito de la sierra de Torrentegui (Lago Guillermo).

Descripción macroscópica: Es una roca muy rica en hornblenda, que unida el feldespato la comunica un aspecto mateado en negro y gris blanquecino. El grano es medianamente grueso (2-3 mm); el anfíbol no muestra idiomorfismo, aunque ocurre en agregados de cristales más pequeños. La roca es esencialmente inalterada.

Descripción microscópica:

Composición: Andesina-labrador (45%), hornblenda (35%), cuarzo (15%), magnetita, apatita.

Texture: Granular hipidiomórfico. La predominancia de cortos prismas de plagioclase común a la textura cierta tendencia gabroídea.

La plagioclase (en 50) muestra un fino saculado pelismótico, que en muchos casos revelan un leve arqueamiento secundario. Zonas muy pocas desarrolladas, alteración escasa. Los cristales de cuarzo, subordinados en número y tamaño, exhiben contornos naturales, en evidente relación de reemplazo ("caries", etc.). A menudo se presenta en asociación pelisquítica con hornblenda. Esta última, que constituye alrededor de 6/5 del total, carece en general de idiomorfismo; su pleocroismo es débil, en tonos pardos verdosos claro a verde lavanda. A menudo se presenta en agregados irregulares de individuos pequeños, que incluyen cristales de cuarzo.
Fig. 9. - Fenolito (29). p, plagioclase; c, cuarzo; h, hornblende; algo cloritizada.
30 - Tonalita

Procedencia: Orilla meridional del lago Moreno (oriental), cerca de 3 km al este de la Bahía López (Lago Nahuel Huapi).

Descripción macroscópica: Roca gris, roca en componentes oscuros (25-30%); feldespato de color blanco grisáceo. Grano mediano a grueso (2-3 mm). Aspecto fresco.

Descripción microscópica:

Composición: Plagioclasa (45%), cuarzo (30%), biotita, hornblenda (20%), magnetita, apatita.

Textura: Granular, epidédroma.

La plagioclasa (andesina-labrador, en 49) es idiomorfa, muy abundantemente maculada, y con recubrimiento irregular por arseniato. La zonality es regularmente desarrollada, a veces recurrente.

La hornblenda (2= ± 15°; 2 = verde botella; Y pardía verdosa; X = amarillo pardo; Y > 2 > X), es idiomorfa, e incluye, al igual que la mica, cristales pequeños de plagioclasa básica. Algunos pequeños cristales de anfibol, intercristales, han pasado parcial o totalmente a clinoclasita.

La biotita se halla parcialmente reemplazada por clorita epidotita y obra. Su hábito es francamente intercristal.

El cuarzo hace las veces de una abundante aceptación, ortosa, en muy escasa cantidad, ocupa los espacios intercristales.

Las mismas consideraciones generales que en el caso de la roca (nº35) concernientes a la cristalización simultánea del feldespato y el anfibol, son válidas en esta ocasión.

31 - Tonalita

Procedencia: Cerro Utá, Río Mirihuau
Descripción macroscópica: Color gris, roca en elementos oscuros, de grano fino a mediano. El feldespato es blanco; las hojas de mica dejan ver a veces una débil coloración amarillo verdoso, signo de clorización. La roca presenta un aspecto fresco.

Descripción microscópica:

Composición: Plagioclasa (30%), biotita (30%), cuarzo (30%), magnetita, apatita.

Textura: Granular, microclorita.

La plagioclasa, que es en conjunto una andesina básica, presenta con frecuencia núcleos de labradorita básica. Ocurre en tablillas relativamente pequeñas, irregularmente alteradas en sericitita y sobre todo clorita. El reemplazo marca con frecuencia los dos cristales, y se puede considerar como total. Las tablillas más pequeñas de plagioclasa se encuentran a veces madando en la sericitita de cuarzo. Los cristales subhedral de biotita incluyen también algunas de esas tablillas. La mica se encuentra en buena parte clorizada. En ciertas áreas la clorita continua desde los pseudomorfos en finas vallas paralelas rectilíneas. Calcita se encuentra también como producto de alteración de la mica.

32 - Tonalita

Procedencia: Lomita al lado del camino entre la estancia Jones y el arroyo del Castillo, cerca de este último (Manuel Huaco)

Descripción macroscópica: Grano mediano; de entre los elementos blancos, de aspecto fresco, se destacan numerosas prismas de hornblenda, de hasta 8 cm de longitud, aparentemente poco alterados y de color verde oscuro. Se observa una débil líneaación debida al ordenamiento de dichos prismas.
Fig. 10. - Fonolita (31). c, cuarzo; p, plagioclase, en parte fuertemente cuolinitizada; b, biotita parcialmente cloritizada.
Descripción microscópica:

Composición: Plagioclasa (50%), cuarzo (25%), hornblenda, biotita (30%), magnetita, apatita.

Textura: Granular, hipidiomórfica. Ligeramente grano-
blástica.

La plagioclasa se presenta en individuos subcubulares muy poco zonales, y provistos de máculas polisintéticas muy bien des-
arrrolladas. Su composición es la de andesina-labradorita (an 50).

Alteración variable, muchos cristales muestran secciones lím-
pidas, mientras algunos se encuentran casi totalmente reemplazados por sericita y caolinita.

La hornblenda es sub o cenadralisa. Su pleocroismo es re-
lativamente débil: Z = verde parásito; Y = verde botella; X = amarillo
verdoso; Y > Z > X. Las máculas (simples o repetidas) según (100) son
comunes. Con frecuencia el anfibol presenta alteración en penachos
fibrosos cuyas fibras conservan en general su carácter de anfibol,
aseptas han sufrido también cloritación. La biotita ocurre en agre-
gados de pequeños cristales, que en gran parte han sido cloritiza-
dos. El cuarzo muestra algunos signos de catástasia con alguna gra-
nuilación y recristalización.

32 - Tonalita

Procedencia: Falda SSE del cerro acotado 1100 m. a la derecha del
arroyo Castillo (Península Huamul) ("Cruzada por filones granít-
icos").

Descripción macroscópica: Grano medianos (2-3 mm). Los cristales de
horneblenda de color verde oscuro, son a veces conspicuos, alcanzando
a más de 5 mm, otras veces se reúnen en agregados radiales. La mica
muestra en ocasiones ciertas decoloraciones, aunque en general fresca, como toda la roca. Se nota una leve estructura fluidal lineal.

Estructura microscópica:

Composición: Plagioclase (65%), cuarzo (15%), biotita, hornblenda (13%), apatita, magnetita.

Textura: Granular, hipidocrósica.

La plagioclase (labradorita ácida, en 53) ocurre en cristales centrales o subcentrales, provistos de finas máicas poliméticas; son además poco zonales, y su estado de conservación es irregular; en ciertas regiones de la roca en las que se ven venitas de cuarzo la alteración en sericitas y cuarzo se encuentra muy avanzada. El anfibol es una hornblenda parda común más abundante de la biotita, que se halla casi completamente cloritizedada. La extensión fragmentaria del cuarzo y la flexura de algunas de las plagioclases indican que la roca ha sufrido presiones.

3b - Ortegranos tonalítico

Procedencia: Orilla austral del lago Traful, a 120 km de Bariloche.

Descripción microscópica: La muestra deja ver un contacto entre un filón de una roca semejante a la descripta más arriba como malchita, y un ortoegrano. Este último es una roca de grano fino, de color blanco, con vegas fina y cortezas de material oscuro, la cual le comunica cierta foliación. La roca es muy semejante a la descripta anteriormente bajo el nombre de granito cataclástico, siendo carese del tono rosado, y posee proporción algo mayor de minerales oscuros. Además, los cristales de cuarzo se alargan aún más en el plano de foliación.
Descripción microscópica:

Composición: Cuarzo (47%), oligoclase (An 23-24)(40%), biotita, hornblenda (10%), ortoclasa, apatita.

Textura: Granoblastica, poiquiloblastica.

Esta roca se diferencia del granito granoblastico por poseer una desarrollada la textura gajiesca y carece casi completamente de feldespato potasio. El cuarzo se presenta en cristales con deformación dimensional, paralelos a la foliación y con mayor tamaño que el feldespato. Este último posee en general muy pobre macizo; a veces es subbedral. Su estado de conservación es muy bueno. La biotita y el anfibol se presentan en cristales pequeños, que siguen la foliación.

35 - Diabita

Procedencia: Orilla meridional del lago Moreno (oriental), cerca de 3 km al este de la Bahía López (Bahía Hanói).

Descripción macroscópica: Corresponde a una parte muy enriquecida en componentes ferromagnesianos de la roca nº 30. El color gris oscuro; los elementos melanocráticos forman cerca del 40%. Grano (1-2 mm), aunque algunos prismas alargados de hornblenda alcanzan a 4 o 5 mm. Aspecto fresco.

Descripción microscópica:

Composición: Plagioclasa (50%), hornblenda (25%), ortoclasa (5%), biotita (10%), cuarzo (5%), magnetita, apatita, titanita, zircon.

Textura: Granular, hipidiomorfa.
Los cristales idiomorfas de plagioclasa y hornblenda
forman un fieltro apretado, actuando el feldespato potásico y el
cuarzo como relleno intersticial.

La plagioclasa es analítica básica (an 45) provista de fi-
nas nacelas y algo reemplazada por sericita, calcita y enolinita. La
zonalidad se manifiesta en general en un margen marcadamente ácido
(oligoclasa media o ácida). Algunos casos de recurrencia resultan
en la formación de zonas de alteración.

La hornblenda (Z; c = 20°) es pleocroica en: Z = verde bo-
tella; Y = pardo varonco; X = amarillo pardusco; Y > Z > X. Presenta
con frecuencia nacelas simple abebe (100).

La biotita muestra el pleocromismo normal: Z = Y = pardo os-
curo, levemente rojizo; X = amarillo. Tanto el anfibol como la mica,
y en especial esta última, han sufrido algún reemplazo por clorita
y epidoto. La mica presenta, ademas, entre sus lamilllas, agregados
landinguras, ya de andalusita; ya de prehnita, o también de pi

tacita.

Algunos minerales ferromagnéticos son en general idiomorfas,
pero comúnmente encierran en sus cuerpos pequeños cristales de pla-
gioclasa, generalmente zonales e idiomorfas.

16 - Hornblenda

Procedencia: Al 97 del carro acotado 1100 m, a la derecha del arro-
yo Castillo, Península Huanal (orilla S del lago Nahuel Huapi).

Descripción microscopica: Color verde claro, grano mediano a grues-
o (5-7 mm), fractura franca. Los cristales de anfibol muestran sus
caras de clivaje muy aparente.

Descripción microscopica:

Composición: Hornblenda (58%), cuarzo, plagioclasa.
Textura: Granular, con tendencia a panidmotofita.

La hornblenda presenta un cébil color castaño claro, o si incoloro; sólo en algunos de los cristales mayores al núcleo y encuentra colorando con manchas pleocroicas en amarillo parduzco amarillo pálido. Su ángulo de extinción es de 17°, y su ángulo 2V (sobre 1) muy próximo a 90°. Las regiones más coloreadas poseen mayor refringencia y algo menor cirrefringencia. Una parte del amarillo ha sido reemplazado por clorita.

La plagioclasa se encuentra muy alterada. En algunos casos muestra un fino encaje que permite identificarla como albita.

Esta roca presenta señales de un proceso hidrotermal que, junto con cloritarizar una parte de la hornblenda, la ha descolorado, enriqueciéndola en molécula tremolítica e is paragonítica. Es probable que estos dos procesos hayan sido distintas etapas de un único fenómeno.

La plagioclasa ha sido, con toda probabilidad, próxima labradorita en su composición originaria.

Esta roca se considera el producto de una concentración local de hornblenda.
ROCAS HIPARIBALES

17 - Anilita

Descripción macroscópica: Las zonas más frescas poseen coloración gris rosada; manchas de alteración ferruginosas muy frecuentes y extendidas; las superficies de las grietas están cubiertas por una patina de lisónita. En las zonas así coloreadas el feldespato muestra un color anaranjado.

Descripción microscópica:

- **Composición**: Micropertita (y antiperltita) (60%), cuarzo (40%).

- **Textura**: Granular panalutrisomorfa, con alguna tendencia al hipidiomorfismo.

La micropertita aparece por lo común amasada según la ley de Carebbán. La estructura perámica, que es del tipo lasimer ("film perlitite", Alling, 1938) es aparentemente paralela al primer pinacoide y comunica a las secciones normales a los dos eje más principales la estructura conocida por "harringtonite", característica de algunos piroxenos rústicos. La laminilla perámica se extiende desde el centro del cristal hasta su mismo borde. La proporción de albita, que se distingue fácilmente de la ortoclase por su mayor lípides, es siempre elevada, pasando a menudo a antiperltita, en las que puede observarse el maclado poliédrico de la albita. La proporción de antiperltitas es tal vez mayor que la de pertitas. Las proporciones de moléculas albítica y ortoclásica en el total es equivalente. Interpretamos la estructura perámica co-
mo producto de exfoliación, correspondiendo la roca a un amaga leu-
co-adamelítico.

Encañados cristales de biotita, casi completamente rees-
clanzados por óxido de hierro, completa el cuadro de minerales pri-
maries, junto a restos de zircón.

38 - Aplita tonalítica

Procedencia: Loma cerca de 3600 m al oeste de la estancia Jones,
Filones a través de la diorita hornblendífera.

Descripción microscópica: Grano fino (0,5-1 mm): color gris rosa-
do, con un tinte amarillento, debido a la alteración del feldespa-
to. Los componentes oscuros están prácticamente ausentes. El fel-
despato muestra a veces contornos rectangulares. La roca es compac-
ta y relativamente frasca.

Descripción microscópica:

Composición: Oligoclase (55%), cuarzo (40%), ortoclase,
biotita (diorita).

Textura: Granular, paracríticos, cataclástica.

La plagioclasa es comúnmente angular, aunque con fre-
cuencia muestra cierto idiomorfismo. Su composición es la de oli-
goclana ácida (an 15). Sólo en contados cristales se observan máxi-
bien definidas. En muchos se ven máscaras irregulares que se acuñan
a la manera de partituras. Otras veces las máscaras se notan deforma-
das mecánicamente. No se observan zonas salvo en aquellos individuos
que conservan sus máscaras bien delimitadas. La alteración del feldes-
pato en caolinita y algo de sericita y epidoto está homogéneamente
distribuida.
La ortoclasa se presenta en pequeños cristales cuadrados, distribuidos a lo largo de venas finas que cruzan la roca en compañía de cuarzo granulado, clorita y algo de albita en cristales muy pequeños y limpidos. También se encuentra feldespato potásico formando áreas irregulares dentro de algunos cristales de oligoclase, que parecen ser un relict.

La granulación en los cristales de cuarzo y feldespato ha sido relativamente intensa.

32.- Cuarzo-albita

Procedencia: Filones en la diorita con hornablanda de la falda SSW del cerro acostado 1100 metros a la derecha del arroyo Castillo (Península Huesul).

Descripción macroscópica: Roca de color gris rosado, con textura irregular que en partes tiende a pegmatítica, con cristales de 1 a 2 cm., de cuarzo y feldespato mostrando este último cierto idiomorfismo. En la mayor parte de la muestra el grano es más pequeño (hasta 0,2mm), y de forma irregular (angulosos). A esta parte corresponde la descripción microscópica. El aspecto de la roca es fresco, y la proporción de minerales oscuros muy pequeña.

Descripción Microscópica:

Composición: Cuarzo (50%), albita (45%), biotita, apatita, magnetita, ortosa (?).

Textura: Granular, parabiocristomorfica, en parte cataclásica.

La cataclasía se manifiesta en el feldespato por sus contornos irregulares, habiendo perdido casi totalmente su idiomorfismo primitivo.
La flexura de los cristales, evidenciada en sus macías, es frecuente, así como la ruptura de los mismos. Su composición parece ser próxima a la 5, no existiendo zonas; que cristales muestran el homogéneo reemplazo por calcinita y sericita típico de los feldeespato afectados por la presión. El vaciado es relativamente escaso, aunque en muchos cristales es fino y abundante. Otra peculiaridad de las macías es la de no prolongarse a través de todo el cristal. El cuarto presenta extinción ondulada y fragmentaria (policrómico) muy desarrollada. Las rupturas en lamillas paralelas al eje c son también frecuentes. En ciertas regiones de la roca la textura es de mortero. La biotita se halla en su mayor parte cristalizada. Se observa la presencia de dos sistemas de finas grises intragranulares que se cortan aproximadamente en ángulo recto, ocupadas especialmente por olivineíta y cuarzo microgranulado. Estas grises no pueden representar planos de deslizamiento ("ruptur") dado que no ha habido traslación a lo largo de los mismos.

La silicificación de la roca ha sido regularmente intensa, los granos no han disminuido su tamaño en más del 50% en promedio, y puede estimarse la recristalización es un 20 o 30%. Esta roca es una disquisatita cuya textura varía entre aplítica y pagmatítica.

Malchita

Procedencia: Orilla sur del Lago Trafal, a 120 km de Bariloche

Descripción macromórfica: Roca densa, de grano muy fino (0,2-0,4 mm); color gris verde oscuro; se observan pequeñas cristales de anfibol, feldespato y cuarzo, estos últimos de color blanco vitre, de manera que predominan el tono oscuro de los primeros. Aspecto fresco, sacaróide.
Descripción microscópica:

Composición: Plagioclás (55%), hornblenda (18%), biotita (7%), cuarzo, apatita.

Textura: Granular, panalotriomorfa.

El feldespato es fresco, sin o con pocas maclas, zonal. Su composición es de andesina media; los cristales son subcruales, y suelen incluir pequeños individuos de anfibol o prisms de apatita.

La hornblenda (2:0 = 17°), es pleocroica según: Z = amarillo verdoso; Y = verde pardo; Y = amarillo verdoso; Y > Z > X. La mayor parte de los cristales son subcruales. La biotita es del tipo común, fuertemente pleocroica; Z = Y = paro rojizo, casi negro; X = amarillo rojizo. Es localmente abundante.

41 - Sagenartita

Procedencia: Brazo Huseul (Lago Nahuel Huapi).

Descripción macroscópica: Porfírica; pasta gris verdosa oscura, de grano muy fino; fenocristales abundantes, blanquecinos, de feldespato, de alrededor de 1 mm de diámetro. Aspecto medianamente fresco.

Descripción microscópica:

Composición: Plagioclás (70%), anfibol (20%), cuarzo (5%), apatita, magnetita.

Textura: Porfírica; pasta holocrystalina, intercalada.

Los fenocristales se encuentran en su mayor parte reemplazados por caolinita y sericita, que dificultan su determinación.
Las áreas no alteradas muestran escaso vaciado y una gran zonalidad. Su composición oscila alrededor de andesina ácida en sus núcleos.

La plagioclase de la pasta es oligo-andesina en tablillas de unos 0,2 mm de longitud media. El vaciado es abundante y las zonas, muy marcadas, llegan en el margen a albita. La alteración se encuentra mucho menos avanzada que en los fenocrístales.

El anfibol es una hornblenda fuertemente pleocroica cuando fresca, en Z verde azulado, Y = parido verdoso; X = amarillo pardo pálido; se presenta en pequeños (0,15 mm) prismas delgados, cuya extensión es: \(
\frac{Z:0}{Y:0} = 10^\circ
\). En parte se encuentran clorritizados. Existen también cristales de hornblenda que presentan el carácter de micro-fenocrístales. El ángulo 2V es negativo y de moderado a pequeño en magnitud.

Como relleno intersticial aparece el cuarzo. Los cristales de magnetita, cuadrados, son de regular tamaño.

El carácter lamprofírico de esta roca se manifiesta en su riqueza en hornblenda idiomérica, y la gran zonalidad de la plagioclasa. Es probable que el anfibol sea algo alcalino.

42 - Lamprófiro hornblendarico

Procedencia: Lago Correntoso, Km 28,5 de Ruca Malén.

Descripción macroesóptica: Es una roca oscura, densa, muy finamente granular, prácticamente afanítica. La roca se presenta en filones dentro de caliza granular fina, de color blanco. Los márgenes de los filones, de menos de 1 cm, se muestran decolorados a grano verdoso claro.

Descripción microesóptica:

Composición: anfibol (80%), piroxeno (15%), feldespato,
cuarzo, magnetita, apatita.

Textura: Intercreral.

Al microscopio se observa un fieltro muy denso de prismas y agujas de anfíbol, de menos de 0,1 mm de longitud, en compañía de algunos prismas subcubicales de diopside (?), y algo de cuarzo y feldespato como relleno intersticial.

El anfíbol es verde, pleocroico, α: θ = 22°. El piroxeno monoclinico se presenta en gránulos o en prismas mal formados, y es gris verdoso pálido, casi incoloro.

Las partes más claras de los filoncillos en caliza son mucho más piroxénicos que la roca normal.

43 - Diabasa

Procedencia: Margen izquierdo del río Limay a 28 km de Bariloche.

Descripción macroscópica: La roca presenta una evidente textura diabásica, en que las tablillas delgadas de feldespato, de color blanco resaltan en la mesostasia del piroxeno. Este último, que ocupa los intersticios, es en general de color negro verdoso, pero en ciertas áreas pequeñas muestra un color verdoso claro, producto de su alteración. También se observan áreas más claras en que la mesostasia es zeolítica. Las tablillas de plagioclasia miden alrededor de unos 3 mm y presentan caras de clivaje, así como el piroxeno, lo cual permite comprobar que este último aparece en individuos de hasta 1 o 2 cm., que incluyen varias tablillas de feldespato.

Descripción microscópica:

Composición: Plagioclasa (40%), augita (35%), magnetita-ilmenita (10%), zeolitas.
las líneas de fractura siempre paralelamente al eje óptico. La oligoclasa, por su parte, parece orientarse de preferencia con (010) transversal a la esquistosidad. La mica blanca, que predomina sobre la biotita, marca la esquistosidad. La plagioclasa presenta a veces contornos subesféricos, englobamiento poiquiloblastico de cuarzo, y una avanzada sericitización que enmascara un macciado regular. Esto sucede cuando el cristal se encuentra dentro de las "folias" cuarzoas. Se observan numerosos agregados informes de lamillitas de biotita descolorada o cloritizada, que con el producto de la disfrotresia de otros tantos cristales de grano, de los cuales se conservan en ciertos casos restos insustanciales. Dentro de estos agregados se observan planos de deslizamiento ("sharuing") que cruzan normalmente a la esquistosidad. La turmalina ocurre en pequeños prismas con su núcleo ocupado por óxido de hierro, que fueron englobados al formarse los cristales. La clinozoisita forma individuos pequeños, subesféricos o anadrosales, de ángulo 2V (1) pequeño.

51 - Anfibolita

Procedencia: Ladera izquierda del valle del arroyo de la Península, 6750 el RN 32 Torrantegui (Lago Guillermo).

Descripción macroscópica: Se diferencia de la muestra 52 por presentar un aspecto más ditotípico, ya que la proporción de feldespato es levemente mayor, así como el grano; la textura granítica es bastante menos marcada.

Descripción microscópica:

Composición: Hornblende (54%), plagioclasa (32%), cuarzo (8%), magnetita (5%), apatita.

Textura: Granular, hipidimorfo, poiquiloblastico

El anfibol es una hornblenda verde, cuyo pleocroismo es:

X- verde anulado lavanda; Y- verde botella; Kammersil o verde oscuro.
tos colores varían, sin embargo con el grosor de la sección; en muchos cristales el color sobre 2 puede ser pardo verdoso, quedando restringido el tinte verdoso a los márgenes biselados de los mismos. Ángulos 2V(-)= 75°. En su mayor parte la hornblenda se presenta en agregados de pequeños cristales que alojan en su interior una gran cantidad de granos de cuarzo de orientación variable.

Algunos individuos mayores pueden alcanzar uno o dos milímetros.

La plagioclase se halla profusamente alterada en calcinita y algo de sericita. Sus contornos aparecen muy confusos, y parece haber ocurrido algo de granulación. Algo parecido sucede con los contornos del anfibol.

Esta roca se diferencia de las 52 en la menor intensidad en el colorido del anfibol y en el mayor desarrollo de la asociación piquéoloblastica hornblenda-cuarzo. Los individuos de anfibol, además son mucho más pequeños. Todo parece indicar la acción de un diálá-coaligmamiento regularmente intenso, acompañado de recristalización.

52 - Anfibolita

Procedencia: Lejana izquierda del valle del arroyo de la península 6750 a el RNM de Torrontegui (Lago Guillermo).

Descripción macroscópica: Es ésta una roca muy pobre de minerales de color claro, por lo que su color es gris-negro verdoso. Su grano es a suave a fino (1-2mm), y su estado de conservación bueno. Textura gneisica bien marcada, lineación perceptible.

Descripción microscópica:

Constitución: Hornblenda (60%), plagioclasa (25%), cuarzo (5%), agatita, magnetita, clinopiroxeno, ortopiroxeno.
Textura: Granular, gruñolítica, parcialmente psiquirolítica.

La hornblenda (Z:C=20°) es fuertemente coloreada y de regular pleocroismo (Z=verde azulado lavanda; Y= pardo verdoso; X=amarillo verdoso; Y Y X), y lleva como inclusiones de pequeños cristales de cuarzo.

La plagioclasa posee una composición variable de un individuo a otro. Los límites están aproximadamente en An 25 y An 50.

Muchos cristales son fuertemente zonales, con zonas normales y en ciertos casos recurrentes. Es muy común el desarrollo de macetas más o menos paralelas a (001).

El cuarzo aparece en cristales de tamaño semejante al de la plagioclasa aparte de aquellos incluidos en el anfibol. El piroxeno se presenta en pequeños prismas; el ortopiroxeno, que es muy escaso, es de tipo bronceítico.

51 - Anfibolita (metadiorita)

Procedencia: Orilla oriental del lago Mascaró, en el vallecito que desemboca a la altura de la cota 796 de la Boya "San Carlos de Bariloche".

Descripción macroscópica: La roca presenta un aspecto diorítico el anfibol, de color negro, y el feldespato, vitreo, forman la mayor parte de la roca, en proporciones semejantes. Textura gneísica visible, aunque no muy bien desarrollada; grano mediano a grueso, (2-3mA). Concentración de cristales de hornblenda de pequeño tamaño, en frances de pocos centímetros de diámetro. Estado de la roca muy fresco.

Descripción microscópica:

Composición: Labradorita (45%), hornblenda (45%), cuarzo (7%), magnetita, apatita.
Textura: Granoblástica, en parte poiquiloblástica.

La plagioclasa muestra, como característica principal un fino y abundante maculado polisintético que con frecuencia no atraviesan todo el cristal, sino que, terminan en cuña dentro del cristal. Este tipo de maculado es propio de los cristales sometidos a presiones. A menudo se observan una torsión de las laminillas. Las bandas de faldeapato presentan una leve textura en mosaico.

La hornblenda es anadral a subadral con su olivaje marcando en general la foliación; su pleocroismo es: Z= verde pardusco o azulado, según el espesor; Y=pardo verdoso; X=amarillo verdoso, perfido. Con frecuencia los cristales de hornblenda presentan una parte de su cuerpo reemplazada por un mineral de parecida orientación óptica, casi incoloro, de refringencia apenas menor y algo mayor birefringencia, ángulos 2V(-)=90°, que parece ser tremolita. Los límites de estas regiones de tremolita son relativamente bien definidos.

La orientación predominante de los planos de macla de la plagioclasa parece ser paralela a la foliación.

54 - Anfibolita

Procedencia: Brazo Huemul (Lago Nahuel Huapi)

Descripción macroscópica: Grano fino color oscuro, textura gneisíca, marcada por bandas finas de faldeapato y cuarzo, blanquecinas, y bandas oscuras anfibólicas, de espesor apenas mayor que el de las primeras. La presencia de cristales de anfibol de mayor tamaño (2-3mm) que el común, da a la roca cierto aspecto de "Augen-Gneiss." Estado de conservación, regularmente fresco. Se observan diaclasas que cortan oblicuamente a la foliación. Algunos cristales de faldeapato, muy caolinizados, se hacen conspicuos por su mayor tamaño.
Descripción microscópica:

Composición: Hornblenda (55%), plagioclasa (25%), cuarzo (15%), biotita (3%), apatita, óxido de hierro.

Textura: Cataclástica (milonítica); granoblastica en parte, como textura residual.

La hornblenda (2: Ca 14°, 2V(−) negativo) es moderadamente pleocroica: 2: verde azulado lavanda, 1: verde pardo-ae; amarillo verdoso. Los cristales son subdráctal en parte, pero muestran un grano muy irregular por efectos de la cataclasis que ha deshecho gran parte de ellos. Los contornos son siempre muy caricoides e irregulares.

El feldespato, cuyo índice de refracción indica andesita, se presenta en parte como cristales hipidioomorfos, pequeños, profusamente caolinizados y en parte en una masa microcristalina irregular. La recristalización ha estado muy subordinada a la cataclasis.

El cuarzo también ocurre en forma de agregados microcristalinos, más o menos mezclado con el feldespato, pero con mayor frecuencia se presentan en agregados relativamente gruesos, con textura pavimentosa; muchos de ellos muestran elongamiento según la foliación.

Al microscopio son característicos los cristales de feldespato, casi completamente opacos por caolinización, y que resaltan sobre el fondo del agregado microgranoso. Estos cristales, según se hace notar más arriba, se observan bien a simple vista. En algunos de los cristales de mayor tamaño, verdaderos "augen", se observan fines anillas policristalinas.
ROCAS DE LA SERIE ANDESÍTICA

55 - Liparita

Procedencia: Cañadón del río Comallo, aguas arriba de la Estancia de Ielo, cerca de las Cueva.

Descripción macroscópica: Es una roca gris blanquecina, con grandes (4-5mm) fenocristales de cuarzo y feldespato, límpidos, con brillo vitreto, abundantes. La pasta es afanítica, de fractura irregular, de aspecto algo terroso, debido probablemente a la cascalización.

Descripción microscópica:

Composición: Sanidina (60%), cuarzo (39%), magnetita, apatita.

Textura: Porfírica, pasta de textura fina, confusa.

Los fenocristales de sanidina son perfectamente idiomorfos límpidos, con olivaje bien marcado y maclas de Carélbad y en algún caso de Baveno. Los de cuarzo son un poco menos abundantes, y tan idiomorfos como los de feldespato.

La pasta es confusa. Abunden las tablillas de sanidina y los cristales de cuarzo sin forma definida, ambos muy pequeños (0,1mm); pero la mayor parte de la pasta está constituida por un finísimo intercrismiento de cuarzo y feldespato potásico, que en muchos casos deja ver una vaga estructura radial (esferolítica). Esta parte de la pasta se caracteriza por una alteración caolínica que le da un tono castaño al microscopio, y que puede llegar a ser tan profusa como para oscurecer totalmente la parte en pequeñas áreas.
56 - Liperita

Procedencia: Falda austral del cerro Guanaco (cota 1420), entre la estación Los Juncos y la estación Nirihau.

Descripción macroscópica: Color perdo chocolate, afanítica, con pocos fenocristales muy pequeños de cuarzo y feldespato. Un abundante agregado paralelo da a la roca un aspecto fluidal. La textura variable de la pasta se manifiesta también microscópicamente; las regiones descriptas más abajo como de mayor grosor se presenta en áreas irregulares de color verde.

Descripción microscópica:

Composición: Cuarzo, sanidina, oligoclase, biotita, magnesita.

Textura: Porfirica, pasta microcristalina con fino intercrecimiento gráfico.

Los pequeños fenocristales están constituidos por oligoclase (10-15% de anortita); con cristales idiomorfos y lípicos, con manchas de Orellana y algunas policristalinas, estas últimas poco repetidas. Existe además en la roca, como xenolitos, un par de pequeños cristales de labradorita, cementados por algo de pasta feldespática muy féruginosa.

La textura de la pasta es variable. La mayor parte está formada por un intercrecimiento muy fino que consiste en pequeños cristales de feldespato potásico cementados por cuarzo, el cual a su vez forma individuos ópticamente continuos de contornos imprecisos, que miden unos 0,03 mm de diámetro. Se encuentra además, esparcidos en la pasta, menudísimas cristales de biotita.

La otra textura predominante está constituida por agregados medianos esferulíticos de tablillas (y fibrillas) de sanidina (alrededor de 0,1 mm de longitud media), cementados por cuarzo. Estos intercrecimientos, que se diferencian de los anteriores descriptos por la mayor tamaños y la ordenación radial de esferulíticos de sus componentes, ocupan áreas definidas pero de contornos irregulares. Se debe notar que una tendencia esferulítica se
58 - Felsita

Descripción macroscópica: Es una roca de color verde claro, muy dura, afanítica, fractura irregular a concoidal.

Descripción microscópica: Consiste en una confusa masa felsítica, que incluye laminillas de muscovita y algunas de biotita clorítica, y cristales muy pequeños de feldespato y de cuarzo, todos al algo espaciados entre sí. La mica se encuentra orientada subparalelamente, al igual que los cristalitos alargados de feldespato. Sus laminillas presentan comúnmente alguna flexura. Su longitud media es de más o menos 0,1 mm. El feldespato, que es en su mayor parte plagioclásico, es subcircular, en general con señales de fragmentación; a veces presenta macras poliesintéticas. Hay también fragmentos de feldespato potásico. El cuarzo, de hábito clástico, es tan abundante como el feldespato. El tamaño de estos cristales es mediocre al de la mica. Existen, además, grumos de caolinita, del tamaño de los cristales. La pasta consiste, aparentemente, en una mezcla muy íntima de cuarzo y feldespato, con algo de sericita, calcita etc. Muy claramente se observan agregados ovales, de 0,5 mm., de cuarzo con algunos prismas de apatita.

59 - Keratófíto cuarófífero

Procedencia: Filones a través de las micacitas, en la ladera derecha del valle medio del río Pichileufú, cerca de la cabecera.

Descripción macroscópica: Color gris blanquecino con un tinte verdoso, con motas verdes poco marcadas. Afanítica en su mayor parte, presenta aislados fenocristales (1-2 mm) de feldespato, apenas distinguibles de la pasta. Se observan pequeñas cavidades cúbicas, que alojaron en un tiempo, probablemente, cristales de pi- rita. La roca muestra manchas ferruginosas más o menos localizadas.
especialmente en las paredes de las grietas, o rodeando pseudomorfonos de limonita según pirita. La roca es compacta, aunque su superficie de fractura aparenta una apreciable alteración.

Descripción microscópica:

Composición: Albite, ortoclasa, cuarzo.

Textura: Porrífrica, pasta microgranítica.

La roca muestra un estado de alteración avanzado.

Los fenocristales de albita y de ortoclasa, presentes en proporciones proporcionales, dejan ver en general, apreciable reemplazo por sericitas, coesilitas, y cuarzo. La plagioclasa muestra nódulos eclusas polisintéticas. La pasta es microgranítica fina, alargada el cuarzo predominante. La mayor parte del feldespato alcalino de la pasta ha sido reemplazado por sericitas.

Algunas finas venas hidrotermales, compuestas de epidoto (algo alemanita) y algo de cuarzo, atraviesan la roca.

La intensa acción hidrotermal que ha sufrido esta roca hace difícil su exacta clasificación. La plagioclasa ha sido indudablemente decalcificada, con formación de epidoto. Es posible que el quísmo de la roca, a excepción del aparente hidróico, no haya sido mayormente alterado.

La cristalización de la roca ha sido probablemente hipabical, dado el carácter de la pasta. Teniendo en cuenta la probable composición de la roca en estado fresco, le correspondería el nombre de latita cuarcífera.

60 - Trachita

Procedencia: En los cortes del ferrocarril del Cañón de la Praga (Chichileufí).

Descripción macroscópica: Color chocolate claro, porfírica; pasta afanítica, finamente bandada. En ciertas bandas más claras se observa un moteado blanco, debido a la presencia de agregados (esferulíticos) de feldespato. Fenocristales pequeños (1 mm) y escasos de feldespato, han sido en gran parte eliminados al parecer por
alteración, dejando los huecos; cuando presentes, muestran secciones límpidas. Apericio de la roca: fresca; dura y compacta.

Descripción microscópica:

Composición: Fenocristales; anortoclase, magnetita; pasta: feldespato potásico, magnetita.

Textura: Porfírica; pasta fluidai, trasgástica.

Los fenocristales de anortoclase son relativamente escase, pequeños, idiomorfos; muestran su característica sección roscica y anchas e formas de enrejado. No presentan señales de alteración. Los fenocristales de magnetita son pequeños y escase. La pasta se caracteriza por una textura bandead, constituida por bandas finas († mm) de microlitas de anortoclase paralelas a la fluidalidad, alternando con bandas en las que las microlitas se disponen radialmente (en esferocitas) o en orden alguno. La longitud media de las microlitas es de más o menos 50 micrones. En algunas bandas las microlitas han cristalizado normalmente a la fluidalidad, formando dos hileras unidas en una línea mediana.

61 - Trachita cuarcófica

Procedencia: Fopolón oriental del Co. Colorado, al S del río Miri- huan.

Descripción macroscópica: Color rojo chocolate; porfírica, con cristales muy pequeños feldespat y cuarzo en una pasta afanítica. Los feldespatos se encuentran en su mayor parte alterados.

Descripción microscópica:

Composición: Sanidina, cuarzo, óxido de hierro.

Textura: Porfírica, pasta fluidai, bandead.

Los fenocristales de sanidina se encuentran algo corroídos, y poco alterados en coeslita. La pasta está fuertemente
impregnada por óxido de hierro, excepto en porciones de contornos definidos, que son cenizas xenolitos. La pasta manchada por el óxido de hierro deja ver en las bandas en que la pigmentación no es muy intensa, textura fluidal, formada por microlitas de feldespato potásico de límites indeterminables, de hábito semiásmático, junto con microlitas alargadas de óxido de hierro (hematita). Estas microlitas se concentran ocultando la textura y haciendo opaca el corte microscópico. Las áreas exteriores de impregnación poseen una textura diferente; las microlitas de feldespato alcalino no poseen orientación y son de mayor tamaño, y el cuerpo está presente en forma de pequeños cristales isodimétricos. Por lo demás el óxido de hierro abandona también en estas áreas. Estas áreas parecen representar xenolitos auténticos que, han sido arrancados por la lava de porciones ya cristalizadas de la misma.

62 - Trachita

Procedencia: Filón cerca de la divisoria de las aguas, cerca de 4 km. al S del Puesto de Ulcinón, en la cabecera del río Comello.

Descripción macroscópica: Es una roca de tonos claros con abundantes microcristales pequeños (1-2 mm) de feldespato, de brillo vitreocrásico, en una pasta afínitica (teñada) de color verde pardo claro, y fractura subconchoidal, fresca. Existen algunos cristales muy pequeños de biotita, y conspícuos agregados de un material terreo de color gris blanquecino-amarillo, pseudomorfos, según feldespato. La roca presenta un aspecto fresco en general.

Descripción microscópica:

- Composición: Sanidina, biotita, tridimita, zeolitas, visehrólorita.

- Textura: Porfírica, pasta vitrea modificada por devitrificación y alteración.
Los fenocristales de sanidina (27(-)= 10°, plano axial // (001) a veces // (010)) son cuadrales y en su mayoría lígulos. Con frecuencia presentan macla de Carlsbad e incluyen a veces pequeñas laminillas de biotita. En algunos casos se advierte un reemplazo total o parcial por el material blanquecino mencionado, que por su índice de refracción y birrefringencia parece ser boi-

dellita.

La pasta, originalmente vítrea, ha devitrificado en su mayor parte adquiriendo una textura microfelsítica irregular, muy confusa; el producto más abundante está constituido por fibrillas o laminillas aplanadamente de clorita, sumamente pequeñas, que forman un agregado confuso, o en cambio forman líneas de pseudo-

fluididad disponiéndose perpendicularmente a las mismas. Hay frecuentes con las masas informes de tridíxita, por lo común pequeñas (0,1mm), que muestran el característico clivaje en forma de tejado. En ciertas áreas de la pasta son también abundantes amigáles de prismas de una zeolita, recubiertos concreciendo de material zeolítico de menor índice de refracción. Los prismas son a veces radiales, otras veces se disponen sin mayor regularidad.

La denominación de trachyte debería probablemente ser otra de conocerse la composición química de la roca. Se podría que en la pasta exista exceso de sílice. La tridíxita, por otra parte, constituye quizás el resultado de la cristalización del líquido residual, por lo que debiera ser considerada como primaria.

53 - Trachyandesita

Procedencia: Cumbre del Añacón Grande, Cosello.

Descripción macroscópica: Roca gris azulada oscura, densa, con numerosos fenocrístales de plagioclasa, pequeños (1 mm), que se distinguen de la pasta afánítica sólo por el brillo de sus planos
de clivaje. Son también relativamente frecuentes los cristales de biotita, idiomorfos que pueden alcanzar hasta 5 mm. La roca posee un aspecto sano.

Descripción microscópica:

Composición: Feldespato potásico (45%), plagioclasa (33%), magnetita (15%), biotita (5%), hornblenda, apatita, allanita.

Textura: Porfírica, holocristalina; pasta microflestitica e traquitica.

Los fenocristales de plagioclasa son lípicos, bien acolchados, con zonallidad bien desarrollada, en muchos casos recurrentes. Su composición es de andesina básica a media, aunque en los márgenes suele llegar a oligoclasa. La biotita es del tipo común, y presenta un manto de corrosión constituido por gránulos de magnetita. Algunos cristales de hornblenda verde presentan una cloritización y carbonitización más o menos avanzada. Existen además microfenocristales de magnetita regularmente abundante.

La pasta está constituida por un agregado microflestitico de feldespato potásico, magnetita y cuarzo. Algunas áreas de la misma muestran una textura más gruesa, en que advierten microlitas de feldespato potásico con un relleno interstitial de cuarzo. Gramíneas de magnetita son abundantes. Las microlitas presentan un subparalelismo marcado en algunas zones, se observa una disposición radiada de las microlitas. Estas zones de textura traquitica se hallan bien definidas en la roca, lo cual hace pensar en un xenolito. En general, el aspecto algo irregular de los fenocristales da a la roca una apariencia pirolítica, que es desmentida por la observación macroscópica.

Formato: Plagiódoto felsespático (Keratófiro)

Procedencia: Parte basal de la Serie Arfénítica; cresta del cerro
al N del campamento volante situado en el valle del río Villegas, al pie de la subida a la Pampa de las Mellizas.

Descripción macroscópica: La textura porfirica es muy marcada. Los fenocristales de feldespato muestran en general contornos es- hedrales, alcanzando a medias en ciertos casos lcm. Su color es roca grisáceo, y muestran inclusiones o reemplazo de un material oscuro (clorita ?). En menor abundancia y tamaño aparecen fenocristales de biotita verdeos (cloritizada ?).

Descripción microscópica:

- **Composición:** Oligoclase, ortoclase, cuarzo, antíbol, apatita, magnetita.
- **Textura:** Porfirica, parte intercristal muy fina.

La característica de esta roca es el aspecto irregular de la mayor parte de los fenocristales de feldespato, que junto a su irregularidad en tamaño y a la abundancia de microfenocristales angulares comunica a la roca un aspecto piroclástico. La pasta, sin embargo, se sin duda producto de la cristalización de un magma. Los cristales de feldespato aparecen regularmente continuando reemplazo por epidoto es frecuente. Los microfibras son de feldes- pato alcalino (ortoclase) de pequeño tamaño (Ø,95 mm). Un antíbol verde en cristales inespecíficos muy pequeños hace las veces de accessorias. Antíbol se encuentra ados como rociado en agregados locales, de regular tamaño, visibles a simple vista, que han perdido en gran parte su forma original, y cuya mayor parte ha sido reemplazada por clorita y epidoto.

65 - Miasquitita sienodiorítica

Procedencia: Pedón en la subida del camino al cerro Otto (San Carlos de Bariloche).

Descripción macroscópica: Grano fino (Ø,5 mm), color verde grisáceo claro. Se distinguen granos de feldespatos alterados, de to- no blanquiceo, y de antíbol, de color verde claro, pequeños, pe-
ro en apreciable cantidad. Ocasionalmente se observan fenocristales de feldespato de 1-2 mm. La roca se encuentra en general algo alterada.

Descripción microscópica:

Composición: Oligo-albita (60%), anfibol (20%), cuarzo (10%), ortoclasa (5%), magnetita, piroxeno, apatita.

Textura: Hipidomorfa, intervortal. Textura periférica marcada.

La plagioclasa óptica junto con parte de la ortoclasa y el anfibol, forma un estrecho fisuro cuyos intersticios están ocupados por anfibol, cuarzo y feldespato potásico. El anfibol en gran parte idiomorfo, así como la ortoclasa, pero su avanzada alteración en clarita le ha hecho perder gran parte de su idiomorfismo. La plagioclasa se presenta en cristales tabulares, regularmente escalonados, zonaclidad débil aunque perceptible, y muy enturbios por reemplazo de caolinita y sericita. Algunos cristales algo mayores que el común inician una textura periférica.

El anfibol se halla en su mayor parte reemplazado por clarita verde de moderada birrefringencia, en agregados fibroalineados. La clarita a reemplazado además parte de la plagioclasa, ocupando con frecuencia zonas estrechas paralelas a (010). El anfibol menos alterado muestra un débil pleocroismo en verde amarillento. Es posible que se trate de una variedad óptica de anfibol (actinofilita?).

El feldespato potásico aparece en tres formas distintas como cristales idiomórficos, rectangulares, formando la zona más exterior de muchas (casi todas) las plagioclasas; y en intersecaciones con el cuarzo formando parte del relleno intersticial muy pronunciado. La ortoclasa muestra además muy finas partituras filamentosas. El cuarzo forma una mesotexura, en compañía de parte de la ortoclasa de la clarita secundaria.

El piroxeno aparece en pequeños prismas, comunes aunque
no numerosos, que suelen mostrar maslado simple. Su color es verde pálido, y por su ángulo de extensión (2:O=40º) parece ser anfíbita; parte del piroxeno deja ver pasaje a clorita.

Albitófiro

Procedencia: Cabecera del Cañón de Las Piedras Coloradas, al este del anecón grande. Filón en conglomerados y andesitas.

Descripción macroscópica: Se observan cristales de feldespatos blanquecinos, brillo mate, idiomorfos, de 1-2 mm de diámetro medio, y laminillas relativamente pálidas de biotita, en una pasta muy finamente granular, casi afinítica, de color gris verdoso muy claro, y de fractura irregular. Algunos cristales de feldespato muestran en sus caras criscimientos densífricos. La pasta presenta algunas manchas blancas, cloridas, aparentemente debidas a coalingita. El aspecto general de la roca demuestra una alteración regularmente avanzada.

Descripción microscópica:

- **Composición:** Albite, cuarzo, biotita (clorita), ortoclase?
- **Textura:** Forrítica; pasta relativamente gruesa, intercatal, muy confusa.

Los fenocristales de feldespatos, de 1 a 2 mm de longitud, se encuentran muy alterados, principalmente en gránulos de coalingita; se pueden observar, sin embargo, sus manchas polisintéticas, poco numerosas. Su composición es An 0-5. Existen además fenocristales de biotita, tal vez algo más frecuentes que los de feldespatos, se encuentran muy alterados, con un principio de desintegración de sus laminillas, y pasaje a sericita.

La pasta es irregular y confusa. Se observan muchos cristales rectangulares y cortos de albíce, muy coalinizados y, en ocasiones, completamente reemplazados por sericita, cementados por un...
mesetas, en general escasa, de cuarzo y pequeños haces de lami-
nillas biotíticas, parcialmente decoloradas, con pleocromismo dé-
bil. El cuarzo forma, aquí y allí, agregados de cristales irregu-
lares, en general de 0,2 a 0,4 mm., pero alcanzando a veces casi
mm. Entre los cristales de feldespato de la pasta, hay algunos qu
parecen ser de feldespato potásico. Su estado de alteración no pa
mite asegurar su identidad. El tamaño medio de los componentes de
la pasta es de 0,2 mm.

Entre los agregados de cuarzo existen algunos constitu-
dos por cuñas unidas lateralmente de modo que sus vértices coinci-
den en un punto, siendo el eje óptico bisector del ángulo de la
cuña, cuyo valor oscila entre 20° y 45°.

67 - Andesita

Procedencia: Contrafuerte a 1000 m. al sur del puesto de V. Suría
(Alto río Comallo).

Descripción macroscópica: Color gris verdoso oscuro; fenocrista-
les de feldespato, 1-3 mm de diámetro, relativamente abundantes,
tabulares; fines orientados subparalelamente, y de color muy pa
recido al de la pasta. Esta es afanítica, de fractura irregular, y
comunica su gris verdoso oscuro a la roca. El aspecto de la roca es
medianamente fresco.

Descripción microscópica:

Composición: Plagioclasa (70%), anfibol, magnetita,
piroxeno, clorita, epidoto.

Textura: Porfírica, intersertal.

Los fenocristales de plagioclasa (labrador-andesina,
An 50) son cuadrales, muy bien maclados, y con zonalidad poco mar-
cada. Siempre presentan un reemplazo más o menos avanzado por clo-
rita, que ha penetrado a lo largo de grietas irregulares, que se
anastomosan; existen también algunas venas ocupadas por zeolitas
u óxido de hierro. Fuera de estas grietas y de algunos gránulos de epidoto la plagioclase presenta superficies límpidas.

Existen algunos agregados de microfenocristales de un anfibol verde poco pleocróico, en trance de desintegración; su aspecto es fibroso deshilachado, y su birrefringencia débil.

La pasta está constituida por microlitas pequeñas (0,1 mm) de plagioclase, algunos cristalitos de piroxeno y un material intersticial relativamente abundante, compuesto de gránulos de fibrillas de anfibol verde, parcialmente cloritizadas, y magnetita. Toda la pasta está poco menos que cubierta por grumos de caolinita. Existen, además, frecuentes agregados de clorita y epidoto (clinozoisita a pistacita), en general de forma oval, pequeños, y pueden ser el producto de la alteración de fenocristales de hornblenda.

65. - Andesita

Procedencia: Cumbre del cerro al SSW del puesto de Félix López, en la margen izquierda del Aº Piterañín.

Descripción macroscópica: Este muestra presenta un color verde claro, debido a su pasta afanítica, de fractura irregular, que encierra fenocristales relativamente espaciados de plagioclase, que, a pesar de su tamaño reducido (2-3 mm), alcanzan a mostrar sus macetas y su brillo vitéreo. La roca es compacta, y regularmente fresca en su aspecto.

Descripción microscópica:

Composición: Plagioclase (80%), magnetita, albite, caolinita, cuarzo, calcita, epidoto.

Textura: Porfírica; pasta intersertal, fina.

El microscopio revela una avanzada reemplazo de los fenocristales de plagioclase (andesina básica) por albite, calcita, y epidoto. Los fenocristales son numerosos, cuadrales; macetas policintéticas frecuentes. La albite ha penetrado en venas muy irre-
regulares, que se ramifican y anastomosan formando una red intrincada; a menudo el reemplazo se efectúa según zonas internas o externas; en algunos cristales el área albítizada forma la mayor parte del mismo. La calcita acompaña casi siempre a la albita, y también hay infiltración de clorita a lo largo de grietas y ocupando áreas irregulares. El conjunto de estos reemplazos hace que en algunos cristales haya quedado muy poco plagioclase original.

La pasta está algo mejor conservada que los fenocrístalos. Las microlitas de andésina, de unos 0,05 de longitud media de contornos bien definidos, forman más del 80% de la pasta, dando origen a un pleno cuyo intersticios son ocupados por clorita y algo de calcita, etc. Hay, además, granulos cuboides de magnetita, bastante frecuentes; algunos cristales de magnetita son tan grandes como para ser llamados microfenocrístalos. Las microlitas de feldeespato muestran máscaras y a menudo también una delgada zona exterior de albita.

El cuerno se presenta aquí y allá en cristales o grupos de cristales rodonizados, a veces francamente irregulares, que oscilan alrededor de Glam en diámetro. La caolinita forma numerosos granos dispersos en la pasta. Existen agregados pseudomorfos de antigorita de fibras cortas, debidamente cuirútricas, de color verde muy pálido en general desordenadas; y calcita, que indican lo preexistencia de piroxeno. Hay también agregados informes, más o menos concrescentes de clorita serpentínosa con o sin calcita, que pueden haber tenido el mismo origen.

69 — Andesita

Procedencia: Valleculito sitiando 1500 a el 80 del punto de V. Murdo (Alto río Comallo).

Descripción macroscópica: Roca de color verde, con grandes fenocrístalos de feldespatos, de hasta 2 cm; la pasta es afínítica. Los fenocrístalos se distinguen poco de la pasta, debido a la analogía de sus colores. Su consistencia es dura, y su fractura irregular.
Descripción microscópica:

Composición: Andrésina (70%), magnetita (10%), clorita, caulinita, epidoto, calcita, sericitas.

Textura: Porfírica.

Es una roca apreciablemente alterada. Los fenocristales de plagioclasa (andrésina media) muestran un reemplazo más o menos avanzado de clorita y calcito, especialmente a lo largo de grietas y clivajes. Sus manchas son relativamente escasas como corresponde al tipo de la roca. Existen algunos agregados de epidoto, clorita y calcito que sugieren la antigua presencia de hornblenda. La pasta posee una textura muy confusa. Se principalmente plagioclásica, pero las microlitas presentan contornos muy definidos. Son abundantes la clorita, la calcita, y el epidoto. Los grúmulos a veces de regular tamaño, de magnetita, son frecuentes.

70 - Andrésita

Procedencia: Pendiente occidental del Amanecer Grande, en el punto P, aproximadamente a 1550 m s.n.m.

Descripción macroscópica: La roca se caracteriza por la abundancia de fenocristales de feldespato, de color gris verdoso pálido, en una pasta afanítica gris oscuro. Los fenocristales son en general pequeños (1-2mm), pero ocasionalmente pasan de 1cm. Se observan manchas verdes debidas a agregados de cristalitos de epidoto reemplazados el feldespato.

Descripción microscópica:

Composición: Oligoclase, anfibol, óxido de hierro, apatita.

Textura: Porfírica.

Los fenocristales de plagioclasa (oligoclase media a básica) se encuentran bastante reemplazados por clorita y caulinita a lo largo de grietas y, sobre todo, líneas paralelas a (010).
Sus macetas son poco frecuentes, y las localidades bien desarrolladas en algunos cristales.

Existen numerosos pseudomorfosis de clorita según anfibol de tamaño reducido (micofenocristales). A menudo se asocia epidoto a la clorita. La pasta es muy fina, y posee una textura muy confusa. En su mayor parte feldesfático, con diminutos cristales de anfibol y gránulos de laminitas de clorita, además de óxido de hierro. Apatita y zircón son raros. Como producto secundario, el epidoto (pietacita) es abundante; a veces aparece reemplazando, junto con clorita, gran parte de los fenocristales de feldesfato. Forma así como la clorita, pero con menos frecuencia, pseudomorfosis de tamaño reducido.

71 - Andesita

Procedencia: En el cerro situado 3 km. al WSW del Ancon Grande.

Descripción macroscópica: Roca dura, gris azulada oscura, muy fresca, con numerosos fenocristales pequeños de feldesfato en una pasta granular muy fina, casi afanítica.

Descripción microscópica:

Composición: Plagioclase (75%), magnesita (8%), cuarzo (7%), biotita (5%), ortocasa (3%), anfibol, apatita.

Textura: Glomeroporífica, pilotáctica.

Los fenocristales de plagioclase varían en composición en un mismo individuo, entre labradorita ácida y andesina básica. Son cristales idiomorfos, con núcleos moderadamente frecuentes; a menudo se agrupan formando conjuntos de dos o más individuos. La alteración del feldesfato es prácticamente nula.

La constitución de la pasta es interesante. En su aspecto más típico está formado por tablillas de plagioclase.
(andesina básica), relativamente grandes aunque variables en tamaños, siendo la media una 0,15 mm. Poseen mallas, y sus ángulos aparecen redondeados; su disposición es subparalela entre sí; hay además numerosos cristalitos cuboides de magnetita, que dan a la roca su tono oscuro y, principalmente, relleno intersticial, ya de cuarzo, ya de feldespatos potásicos, y que es poco abundante. El feldespato muestra a veces clivajes nítidos. Otro constituyente de relativa abundancia es biotita, como pequeños individuos semi-intersticiales. En ciertos lugares de la pasta ésta se hace más gruesamente granular, pudiendo predominar localmente el cuarzo en forma de grano; hay además pequeñas áreas en donde los gránulos de magnetita se han concentrado profusamente. Algunos casos, microtécnicas de anfíbol verde, aparecen parcialmente reemplazados por magnetita. En conjunto, la textura de la pasta se caracteriza por su irregularidad.

72 - Andesita

Procedencia: En la margen izquierda del arroyo Pitarruín, al S del puesto de Félix López (Al 59 del Anecón).

Descripción macroscópica: Es una roca gris verdoso claro, con frecuentes bancos cristalinos de feldespatos, blanquecinos, que en casos excepcionales llegan a medir un cm, y algunos prismas de anfibol. La roca es relativamente fresca, aunque el feldespato muestra señales de alteración. Estos últimos forman también agregados de varios cristales.

Descripción microscópica:

Composición: Plagioclasa (70%), feldespatos potásico (10%), magnetita, hornblenda, clorita, epidoto, zeolita.

Textura: Porfírica; pasta holocrystalina intersticial.
La plagioclase presenta un intenso reemplazo por zeolita, y en menor grado clorita y epidoto. Se presenta en fenocristales poco maclados, zonales, cuya composición oscila alrededor de An 42. Se observan cristales de hornblende verde con un margen de óxido de hierro.

La pasta es algo confusa; presentan microlitas muy finas de plagioclase, algo de magnetita, y gránulos de espinilita. Existen agregados de zeolita, que es aparentemente asilítico (monoclinico, 2V(-)= 30° 2), epidoto zoisítico, verde pálido y birrefringencia moderadamente fuerte.

73 - Meta-mandesita

Procedencia: Ruca Malón.

Descripción macroscópica: Roca esfamítica, con algunos fenocristales pequeños de feldespato que se distinguen sólo por sus planos de clivaje, y numerosos cristales pequeños de pirita, que especialmente se encuentran en planos de díaclos. La roca es de color gris verdoso oscuro y muy dura.

Descripción microscópica:

- **Composición:** Plagioclase, cuarzo, biotita, apatita, pirita.
- **Textura:** Forférica, holocristalina.

Esta roca ha sufrido un intenso ataque hidrotermal durante el cual se ha perdido el porfiro, potasio, hierro, sulfuros, y sílice. Los fenocristales de oligoclasa más a básico, pequeños, han experimentado un reemplazo por espinilita primero y luego por biotita y pirita. Algunos fenocristales de un mineral férrico se han convertido en pseudomorfos de pistacita.

La pasta presenta una textura muy irregular, debido a la penetración irregular de sílice y biotita. Se observan micro-
litás (0.2 mm) de plagioclase, de contornos difusos, e individuos algo mayores de cuarzo, muy irregulares. Los prismas y agujitas de grafito son muy numerosos, formando un fieltro no muy apretado. En la roca aparece en laminillas algo irregularmente distribuidas, que a veces se separan formando venas junto a la pirita.

74 - Pérfido andesítico

Frecuencia: Cerca al Lago Bajío a 11 km de Roca Molón.

Descripción macroscópica: Roca porfírica, con abundantes fenocríticos de feldespato, de color gris verdoso, de 3-7 mm de diámetro cuya textura se distinguen imperfectamente de la pasta verde ocurre, cristalina o microgranosa. Es una roca frásica, cara, con fractura semiconcoidal. Muchos cristales de feldespato muestran en su interior epidoto, de color verde muy vivo.

Descripción microscópica:

Composición: Andesina (30%), enfibol (10%), cuarzo (7%), magnetita, apatita, arsénio.

Textura: Glomeroporífrica; pasta microgranular.

La roca es de cristalización hipobíasil. El feldespato (andesina ácido) se presenta en fenocristales comúnmente reunidos en grúas de 2-3 mm de individuos. La alteración se avanza con formación de calebita, esquistita y epidoto, este último en grandes cristales observables a simple vista y que posee poco más de 10% de molécula cristalina. La plagioclase es algo pobre en submuclados y muestra zonas, a veces recorrientes. Existen algunos fenocristales de cuarzo, de apreciable tamaño, muy redondeados y engolados en sus contornos.

La pasta consiste en cristales isométricos e irregulares, de plagioclases, con contornos imperecios (naturales), algunos idiomorfos del número mineral, y numerosos prismas y agujetas de horriblando verde, en general muy pequeños, pero que pueden alcanzar el tamaño de microfenocristales. Su ángulo 2:6 es próximo a 12
plioceno, débil, leve alteración en clorita. Los prismas de hornblenda ocurren generalmente incluidos en los cristales de feldespato de la pasta.

75 - Melafiro

Procedencia: Extremidad sur del Lago Pehoé, a 13 km de Roca Mal- lón.

Descripción macroscópica: Se observan numerosos fenocristales pequeñísimos de feldespato pequeños (1 mm), que resaltan en una puesta verde de textura fina pero que no alcanza a ser afamítica. La roca presenta un aspecto poco fresco, con macizos verdosos de clorita, irregulares.

Descripción microscópica:

Composición: Piroxeno, serpentina, óxido de hierro, plagioclase.

Texture: Porfírica, pasta intercostal.

El microscopio demuestra una alteración intensa en esta roca. Los fenocristales de plagioclase, una andesina-labradorita muy zonal, con zonas recurrentes, de forma poco alargada, ha sufrido reemplazo por zeolita y serpentina, de tal forma que dificulta su identificación. Hay muy escasos cristales de clino-piroxeno todavía conservados; con individuos pequeños, incoloros, que presentan reemplazo parcial por serpentina. El resto ha sido totalmente alterado, y ahora se ven pseudomorfos de serpentina del tipo de bowlingita; la mayor parte de esta, sin embargo, se encuentra dispersa en la pasta, que muestra tablillas de plagioclase con una masoestasis de serpentina y óxido de hierro.

76 - Melafiro

Procedencia: Cerca de 3700 m al norte del puesto de V. Murúa (Alto río Cosallo)
Descripción macroscópica: Es una roca porfírica, con numerosos y pequeños (más o menos 1 mm) fenocristales de feldespato, algunos prismas de hornblenda de regular tamaño (hasta 8 mm), en una densa pasta negra, a esférica. El feldespato posee brillo vítreo en las zonas más frescas, pero cerca de las grietas adquieren un tono blanquecino mate que les hace resaltar en la pasta. Algunos agregados terrosos, amarillentos, denuncian una alteración ferruginosa.

Descripción microscópica:

Composición: Plagioclasa (65%), feldespato potásmico (15%), magnetita (9%), oixohornblenda (3%), apatita, zeolita.

Textura: Porfírica, pasta holocrystalina, intercristalina.

Los fenocristales de plagioclasa (An 35, 2V ()=76°) son semicoreales, poco macizos, muy visibles. Las zonas exteriores pueden llegar a anesina. La alteración está reducida a algunas venas de clorita. Existen algunos pequeños fenocristales de hornblenda basáltica, en gran parte reemplazada por óxido de hierro, dejando un núcleo del mineral inalterado.

La pasta está constituida, en un 80%, de microlitas de anesina básica, delgadas y pequeñas con contornos nítidos, en un caso, la medición con la platina universal de una microlita de mayor tamaño dio: An 47, 2V()=84° 2. Existen además muchos grafítidos de óxido de hierro y algo de clorita. Un material intersticial poco abundante, parece ser feldespato potásmico.

77 - Basalto olivínico

Procedencia: Puesto Blest, orilla norte del lago, frente al puesto. Pilón en el granito.

Descripción macroscópica: Boca densa, oscura, fresca, se observan fenocristales grandes (hasta 4-5 mm), de olivina, y tablillas mas
puejleñas de plagioclase, en una pasta granular muy fina, de color gris azulado oscuro.

Descripción microscópica:

Composición: Plagioclase (45%), piroxeno (30%), olivina (20%), magnetita.

Textura: Porfírica, pasta entre intergranular microdolerítico.

La roca es perfectamente fresca. La olivina es idio ó hipidiomorfa, y muestra su acostumbrado olivaje fino e irregular.

La plagioclase se presenta poco diferenciada en generaciones, y su tamaño varía entre 2mm y 0,2 mm. formando parte estos últimos de la pasta. Son cristales muy frescos, regularmente maclados, con variación zonal moderada, que de preferencia se manifiesta en el margen. Su forma de los cristales es perfectamente cuadrada y muestran orientación subparalela poco marcada. Su composición es bitownita media (en 80), llegando en los márgenes a labrador-bitownita. El piroxeno es de color pardo verdoso, y es de dos tipos: hipersteno y augita. El segundo es más abundante, aunque el ortopiroxeno no es escaso. Ambos se aparecen comúnmente en forma de prismas pequeños entre las tablillas de plagioclase. No se ha comprobado la existencia de litonita, a pesar de haber empleado en su búsqueda la plata universal. La magnetita es abundante. Una pequeña proporción de vidrio pardusco ocupa los intersticios de la pasta.

78 - Melafito

Procedencia: En el valle de las Piedras Coloradas, 3000 metros al oeste de Asecón Grande (alto río Comallo).

Descripción macroscópica: Roca gris negra, de aspecto muy fresco, denso. Presenta abundantes fenocristales de plagioclase, tabulares y delgados, de unos 3 mm de longitud media, que se confundirían con la pasta oscura a no ser por el brillo vitreo de sus planos de clivaje, que evidencian el maclado polisintético. Existe entre los
fenocristales un marcado paralelismo. La pasta es microgranular casi afanítica.

Descripción microscópica:

Composición: Plagioclasa (70%), óxido de hierro (e ilmenita ?) (15%), piroxeno (7%), apatita.

Textura: Porfiria, pasta intersticial, holocris-talina.

La plagioclasa es relativamente fresca, aunque presenta reemplazo clorítico a lo largo de finas venas, acompañado de algo de calcita. Sus niveles son moderadamente abundantes; la zonalidad está bien desarrollada, y es a modo recurrente. La composición de los fenocristales es la de labradorita básica, mientras que la de las microlitas de la pasta es poco más ócida (labradorita óci-da a media). Los fenocristales de piroxeno son escasos y pequeños, reuníéndose en grupos de dos o más individuos. Sus propiedades ópticas son: Z: = 43°; 27(+) = 47°. Se trata, pues, de una augita.

La pasta posee textura algo confusa, los prismas de piroxeno se encuentran en gran parte reemplazados por óxido de hier-ro y son poco abundantes. Como material intersticial entre las microlitas de plagioclasa, hay gránulos de calcita. Hay numerosas agujitas de apatita. El material intersticial es escaso, compara-do con las microlitas.

79 - Basalto

Procedencia: Alto valle río Comallo, 3-5 km al oeste del puesto de Cañadón de Ranchurí.

Descripción macroscópica: Roca oscura, cuyo aspecto refleja una apreciable alteración. Hay fenocristales pardo rojizos, pequeños (2-3mm), en una pasta pardo negruzca, afanítica, de fractura irregu-lar con abundantes manchas cloríticas y pseudomorfos de epidoto; nielados prismas de piroxeno se confunden parcialmente con la pasta. La roca muestra planos de agrietamiento subparalelos.
Descripción microscópica:
Composición: Plagioclase (70%), piróxeno, magnetita, clorita.

Textura: Porfírica; pasta holocristalina, intergranular.

Los fenocristales de plagioclase son numerosos; con frecuencia forman agregados de varios individuos. Su composición es An 65; en sólo un caso dentro de la sección, se observa un núcleo más básico (An 80), muy irregular en su forma, como se hubiese habido un activo reemplazo del mismo por la solución más albítica; no se trata, en verdad, de una típica zonalidad, puesto que el núcleo mismo muestra reemplazo en su interior por labradorita. Los cristales son en general lapiiticos, pero presentan reemplazo por clorita serpentínica y por la misma pasta ferruginosa, ya en áreas irregulares, ya en zonas periféricas y siguiendo planos de clivaje. La zonalidad está poco desarrollada. El piróxeno, de tipo diopсидico (α:β=40°, 2V()=64° 2), aparece en forma de fenocristales de tamaño variable, poco numerosos, en menudo reunidos junto con plagioclase en grupos de varios individuos; su color es castaño verde o pálido y presenta máculas sobre (100) y formas subcubicales.

La pasta está formada por microlitas delgadas de labradorita, variables en longitud (promedio aproximado 0,1 mm), con un plano de macula simple central siempre presente; la fluidalidad está definida sólo en las proximidades de los fenocristales. Como materia interstitial hay abundantes gránulos de magnetita, que hacen a la sección casi opaca, y diminutos cristales de clinopiroxeno.

80 - Basalto

Procedencia: Alto río Consalío, cerca de 2500 m al sur del Puente de Y. Murda, en el filo del contrafuerte. Filón en el granito.

Descripción macroscópica: Roca dura, oscura, muy fresca, fenocrístales de plagioclase (1-2 mm), orientados subparalelamente, brillo
vitrificado, maca de Caribe muy generalmente visible. Pasta de color gris oscuro, afanítica, fractura concoidal. Planos algo irregulares de agrietamiento, discontinuos, paralelo a la fluidalidad.

Descripción microscópica:

Composición: Labradorita (30%), magnetita, calcita, clorita, espátula.

Textura: Porfírica; pasta holocrystalina, pilótica.

Los fenocristales de plagioclasa (labradorita/an 60) están suavemente bien conservados, con máscaras finas, regularmente abundantes, y contornos ovoidales. La zona está relativamente poco desarrollada. Los fenocristales presentan una clara orientación paralela, el ideal que las microlitas de la pasta. La alteración de la plagioclasa es rara, pero se encuentran a veces reemplazadas por material zeolítico. La magnetita aparece también como microfenocristales subórdina; también se encuentran en cierta abundancia agregados de clorita, piroclorica (Z=verde pálido, X=verde amarillento pálido), y birrefringencia débil (más o menos 0,006). Los contornos de estos agregados indican pseudo-morfismo según piroxeno. En algunos casos la clorita está asociada a algo de epidoto y/o calcita. Las microlitas de la labradorita óxida de la pasta son delgadas y cortas (0,05 mm), si se orientan subparalelamente entre sí, dando a la roca una marcada fluidalidad. Las microlitas son regularmente abundantes; el espacio entre ellas es ocupado por numerosos grámulos de calcita y magnetita; los primeros especialmente se presentan en gran cantidad. La apatita aparece como prismas delgados colorados pero debilmente plagiocristales; espardo verdoso, c-astatoño verdoso pálido.

31 - Toba cristalina cuarzo-albitofílica

Procedencia: Inclusiones en la masa endoesférica, en el valleclito al SE de Formentaguí (Lago Guillelmó).
Descripción macroscópica: Roca gris blanquecina con muchos fenoclastos de feldespato por lo común no mayores de 1 ó 2 mm., en una pasta afínítica. Se observan frecuentes cristales pseudomórficos de limonita según pirita, en cubos perfectos, que pueden llegar a 2 ó 3 mm. Se notan también agregados irregulares de epidoto.

Descripción microscópica:

Composición y textura: Semejante a la muestra n° 33.

Los piroclastos angulosos de cuarzo son más numerosos que en aquella roca; la distinción ademas la presencia de cubos de pirita total o parcialmente substituida por limonita. Las esferulitas de albita más grandes y menos frecuentes. En cambio, pequeños agregados globulares de sericita son comunes. La proporción de la sericita en la pasta felsítica es muy grande. Se evidencia que la presencia de abundante esfícto, pirita, cuarzo y sericita corresponde a un relleno intrusivo, probablemente relacionado con un cuerpo intrusivo transjamónico subyacente.

82 - Toba lítica-cristalina albitofoírica

Procedencia: Inclusiones en la masa andesítica, en el vallecito al SE de Torrantegui (Lago Guillermo).

Descripción macroscópica: Es una roca compacta de color gris verdoso claro, está compuesta por numerosos perioclastos de tamaño irregular, en una pasta afínítica. El tamaño de aquellos es en general no mayor de 1 mm, salvo en el caso de algunos algo más grandes. El leve tono verde está dado por pequeños individuos de esfícto, que aparece además ocupando algunas venas delgadas.

Descripción microscópica: Los mayores componentes de esta roca son trozos angulosos de una roca volcánica perófírica (albitofoíro), de textura fina, compuesta de fenoclistas que a veces muy epidotizados de albita y pasta pilótónica del mismo material. La gran riqueza en epidoto secundario es la característica de esta roca. El cemento lo constituye un agregado microfelsítico, cuarzo-feldespático,
de grano irregular, con cristales angulosos de cuarzo y albita, y abundante epidoto que en gran parte reemplaza esta última, frecuentes son los agregados de epidoto y cuarzo; el primero aparece en cristales columnares radiales; los cristales de cuarzo forman un estrecho margen que sigue el contorno irregular del agregado y que proyecta hacia el interior sus prismas piramidados exagonales.

83 - Toba cristalina liperítica

Procedencia: Vallecito al ENE de Torrecantegui (lago Guillermo), en la pendiente occidental de la sierra.

Descripción macroscópica: Roca gris blanquecina con apreciable cantidad de porfirioclastos de cuarzo y feldespato de 1 a 3 mm de diámetro en una pasta de aquel color, con productos de alteración (sericitico) blanco. La muestra es compacta, aunque algo agrieta da en planos irregulares.

Descripción microscópica:

Composición: Albita, cuarzo, sericita, magnetita, calcita, etc.

Textura: Porfirioide.

La mayor parte de los cristaloclastos son individuos subesféricos o anulares de albita, regularmente maclados, composición homogénea, alteración avanzada en caolinita y "sericita". Con frecuencia los cristales aparecen rotos y sus partes separadas por venas del material constituyente de la pasta. Otros cristaloclastos son de cuarzo, y muestran contornos aún más angulosos y a veces embabamientos. Existen además algunos pseudomorfos de muscovita y magnetita, (según hornadental ?). La pasta está formada por gran cantidad de esferulitas de albita, entre las que se ci- rullen microcristales irregulares de cuarzo y algunos de albita (sericita está también presente). Con frecuencia el cuarzo, a veces en compañía de feldespatos, forma agregados aislados. La textura de la pasta se caracteriza por su irregularidad. La calcita se
presenta en agregados informes. La roca parece haber sufrido un fuerte ataque por soluciones hidrotermales, sílicas, álcalines, que dieron origen al feldespato sodico, al cuarzo y a la sericita, afectando grandemente la textura, de tal modo que su interpretación como roca piroclástica (y no eruptiva) debe ser confirmada por observaciones en el terreno.

84 - Toba cristalina andesítica (ignimbrita)

Procedencia: Dique en la angostura del cañadón al oeste de la desembocadura del Cañadón Nancuchi (Alto río Comallo).

Descripción macroscópica: Esta roca presenta un tinte rojizo y textura muy irregular. Se observan trozos pequeños (hasta 2 cm) de una roca felsítica, gris verdosa, que encierra algunos fenocrístales de feldespato, muy pequeños, encerrados en una matriz rojo amarillenta que contiene gran número de cristalitos límpidos de feldespato y algunos de hornblende y biotita. En la pasta se observan ciertas pseudopluidalidad, debido a zonas alargadas, subparalelas mal definidas, de color verde claro. Existen algunos elementos líticos andesíticos de mayor tamaño y pasta grisácea.

Descripción microscópica: La casi totalidad de los cristales son de plagioclasa, predominando la andesina y la oligoclasa básica; hay algunos de labradorita. Los cristales son en general límpidos, bien macizados, zonales. Las formas son irregulares, angulosas; algunos que otro conserva algún idiomorfismo. Hornblende también aparece como fenópicroclastitos, en individuos pequeños, prismáticos, de color verde. Los elementos líticos están constituidos por algunos trozos pequeños de pasta pirotáxica o intersertal, con asociaiones de micas muy ferruginosa, y minerales de plagioclase básica.

La pasta es en parte cristalina, microfelsítica, y en parte vitrificada. Las áreas de una y otra textura se distribuyen irregularmente. El 80% es de naturaleza vitrificada, y muestra una pseudo-
fluidalidad típica de la llamada texture ignimbritica. Esta sigue en parte los contornos de los cristales. Los detalles de la textura en la pasta son enmascarados parcialmente por una gran profusión de granulaciones verde amarillentas, probablemente cloríticas. Existen además cristales secundarios de cuarzo, que forman agregados pequeños, imprecisos en su forma, lo cual tiende a dar a la roca un aspecto irregular. Hay, finalmente, individuos relativamente grandes de magnetita, que son, al menos en parte, producto del reemplazo de cristales de biotita.

85. Noba cristalovítreas andesítica

Procedencia: Pendiente desde el Ancon Grande, en el punto F, cerca de 1700 m s.n.m.

Descripción macroscópica: A primera vista esta roca se confunde con una lava; posee una gran cantidad de cristales de plagioclase de pequeñas dimensiones (1 mm) de tamaño homogéneo, en una pasta afanítica pardo grisácea. Hay también algunos cristales muy reducidos de un mineral férrico. Se observan inclusiones de algunos cm. de un material afanítico, gris azulado. La roca es consistente y de apariencia fresca.

Descripción microscópica:

- **Composición**: Plagioclase (40%), vidrio (45%), hornblenda (clorita), biotita (clorita) (5%), magnetita (3%), xenolitos (5%), apatita.
- **Textura**: Porfiopirolíticas; pasta vítrea, parcialmente devitrificada.

El microscopio revela una pasta vítrea en su mayor parte, pardo rojiza, que presenta una finísima estructura granular muy contraída y apretada. En parte el vidrio ha devitrificado, formando esferulitas atravesadas por líneas paralelas delgadas y oscuras, que dan un aspecto fluidal, y que siguen generalmente los
contornos de los cristales. Las fibrillas son débilmente birrefringentes y poseen alargamiento negativo. Las esferulitas son poco o nada distinguibles del resto, salvo con nicoles cruzados.

Los feldespatos poseen formas subcubicales y a menudo también contornos irregulares clásticos. Son cristales moderadamente maclados, poco zonales; su composición es oligoandesina, pero han sufrido una marcada albítización a lo largo de venas y redes irregulares transversales que envían cuñas en el sentido de los planos de clivaje. Es común también la presencia de gránulos de calcita.

Los cristales de anfibol y biotita se encuentran totalmente reemplazados por clorita y epidoto. Un xenolito, presente en la sección, corresponde a una andesita con fenocristales tabulares de oligoandesina en una pasta interseccional rica en clorita.

La gran cantidad de cristales de feldespatos, y el contorno irregular de muchos de ellos, da a la roca un marcado aspecto piroclástico.

86 - Toba dacítica vitrocristalina

Procedencia: Grilla derecha del río Pichileufú, al lado de la casa de Francisco Pico.

Descripción macroscópica: Es una roca gris verdoso clara, atravesada por delgadas venas verdes (de epidoto), y rica en pequeños fenocristales de cuarzo, feldespato y biotita, todos cuadrados. La roca muestra una fractura fresca, siendo además muy dura y compacta.

Descripción microscópica:
- Composición: Oligoclase, cuarzo, biotita, vidrio (devitrificado).
- Textura: Porfirica, pasta cinerítica, en parte concreacional.
Los fenopiroclasitas son de oligoclase y cuarzo, con algo de biotita. La plagioclase presenta contornos sub ó cuadrales, a veces anedrales, por fragmentación de los cristales. Por lo común presentan maclas finas y superficies perfectamente límpidas. Se advierte en algunos de ellos crecimiento zonal bien marcado.

El cuarzo es anedral, y suele mostrar contornos provisionales de profundas entradas. El agrietamiento es común en ambos minerales.

La pasta está formada por pequeños fragmentos de cuarzo y oligoclase, algunas tabillas feldesfáticas (sanidina?) y elementos cinerícticos con sus formas características encorvadas que predomina sobre el material cristalino, que se halla totalmente alterado en fibrillas (zeolíticas?) normales a sus contornos.

Existe además en la pasta, en abundancia, prismas de mineral zeolítico, probablemente pilitolita, recubiertos por una sustancia isotropa de refractividad aún menor. En ciertas regiones de la pasta, este material secundario predomina en absoluto sobre el original, formando áreas de 1 a 2 cm. en que la pasta se constituye de prismas de zeolita en agregados radiales cubiertos por una película del material isotrópico ya mencionado. Estos agregados radiales están a su vez recubiertos por una capa de fibrillas paralelas de calcedonia que en conjunto forman un revestimiento relativamente espeso, de aspecto concrecional (botroidal); por último, un relleno de fibrillas de calcedonia forma el cemento que une a los agregados zeolíticos.

87 - Toba cristalina liperítica

Procedencia: Dique en los "esquistos de Esquel", corte del ferrocarril cerca de Esquel, Chubut.

Descripción macroscópica: Color verde claro, con abundantes manchas blanquecinas que representan los cristales de feldespato;
existen además cristales de cuarzo; el tamaño de éstos fenoclastos raramente pasa de 2 mm. La pasta es afanítica, de color verde claro. La roca es dura fresca, y muy semijunta a la muestra n° 48, aunque menos granular en su textura.

Descripción microscópica: La roca consiste de piroclastos de cuarzo, plagioclasa ácida y eutoma irregulares y de tamaño variable (en general menos de 0,5 mm de diámetro), cementados por una pasta rica en escamas de biotita pélida y sericitas. Los feldespatos se encuentran por regla general en buen estado de conservación. La matriz incluye además gránulos de caolinita y óxido de hierro.

La roca es atravesada en varios sentidos por finas venas de cuarzo, feldespato potásico, glosita y epidoto, en diferentes proporciones. El cuarzo ocupa la parte media de las venas flanqueadas por el feldespato. El epidoto aparece a menudo en prismas orientados más o menos normalmente a las venas. Otras de formación más reciente, están constituidas externamente por un material neo-lítico, casi isotrópico (analcima?).

El aspecto microscópico de la roca es notamente piroclástico. Su hábito filoniano puede deberse a un rellenamiento de grietas. Otra interpretación probable es que el aspecto clástico de los elementos cristalinos haya sido adquirido por efecto de presiones. Ello estaría corroborado por la existencia de planos de "shes microscópicos en la pasta."
BASALTOS TIPO "PLATEAU" DEL TERCIAARIO SUPERIOR

88 - Basalte olivínico

Procedencia: Camino de la Ensenada a Petrohué. Lava del volcán Osorno.

Descripción macroscópica: Roca de color gris oscuro, densa, muy finamente granular, observándose el brillo de las tablillas de plagioclase, dentro de una base negruzca. Existen algunas pequeñas vesículas, ocupadas a veces por un material blanco.

Descripción microscópica:

Composición: Plagioclase (40%), piroxeno (20%), vidrio (20%), magnetita (10%), olívica (10%).

Textura: Pórfírica, hipocrystalina.

La textura pòrfírica está poco marcada, ya que son pocos los cristales de feldesfato que llegan a 1 mm, y no hay dos generaciones bien diferenciadas. La plagioclase está inalterada y se presenta en tablillas relativamente poco macladas, muy zonales, y alargadas. Su composición determinada por medio de la platinina universal, es de An 85 (bituminita), pero existen casi siempre zonas marginales delgadas y bien definidas, en que llega a andesina básica. La olivina aparece en microfenocrístales, con una aureola de prismas de piroxeno. Este último mineral se presentan a veces como fenocrístales. Sus propiedades ópticas son: ε:0=46°, 2V(⊥)=50°±2. Se trata entonces de una augita, de color castaño verdoso. Los prismas de la pasta son también de augita, no habiendo podido comprobarse la presencia de otro clinopiroxeno.

Entre las tablillas de plagioclase y los prismas de piroxeno existe una regular cantidad de vidrio, que muestra un aspecto granular muy fino, y posee índice de refracción relativamente elevado.
Basalto olivínico

Procedencia: Maseta basáltica a la izquierda del río Pichileufú y al norte del ferrocarril a Bariloche.

Descripción macroscópica: Es una roca de color gris ceniza con motas o manchas algo más oscuras, de grano muy fino (casi afanítico), sembrada de abundantes cristales diminutos de olivina, en parte alterados. Se observan algunas esfígas de ópalo (?) y clorita. La roca presenta un abundante agrietamiento; su apariencia es la de una roca alterada.

Descripción microscópica:

- Composición: Labradorita (35%), augita (30%), olivina (25%), magnetita, apatita, analcima.

- Textura: Pseudítica, pasta intergranular.

La plagioclasa se presenta en delgadas tablillas de unos 0,15 mm de longitud media, liápidas, y provistas de fines máculas. Zonalidad regularmente desarrollada. Orientación fluidal marcada.

La augita (2V=45°, 2V(+): moderado) aparece en prismas y gránulos de color verde parvusco pálido.

La olivina ocurre casi exclusivamente en forma de fenocristales idiomorfas que muestran un margen más o menos reemplazado por iddingsita. Algunos cristales más pequeños han sido alterados totalmente. Su composición corresponde a crisolito (2V=90°).

La magnetita se presenta con abundantes gránulos cuboidales. Por último, como relleno intersticial, poco abundante aunque no raro existe un material isótropo muy debilmente birrefringente de escasa refringencia, que muestra las pequeñas gristas típicas de analcima.

Basalto olivínico

Procedencia: Desembocadura del arroyo a la izquierda del río Pichileufú, cerca de 3 km. aguas arriba del punto de Malargüe.
Descripción macroscópica: Rocas densas de color gris pardo oscuro, afanítica, con numerosos cristales de olivina alterada en iddingsita, muy pequeños, apenas distinguibles de la pasta. El aspecto de la roca es fresco.

Descripción microscópica:

Composición: Labradorita (5%), augita (30%), olivina, (iddingsita)(10%), magnetita (8%), apatita.

Textura: Porfirita, intergranular.

Esta roca es muy semejante a la 89. Su grano, a pesar de ser más pequeño, y la olivina se encuentra totalmente reemplazada por iddingsita. Se encuentran además, algunos fenocristales de plagioclase, que poseen una gran cantidad de prismas de piroxeno distribuidos en todo su cuerpo, salvo un estrecho margen del mismo.

La analcima intersticial que encontramos en la roca precedente parece no existir en la presente

91 - Basalto olivínico

Procedencia: Sentosituido encima del manto de carbón de Mina Newbery (Neuquén).

Descripción macroscópica: Rocas verdes muy oscura, densas, grano muy fino; fenocristales de olivina, pequeños, totalmente serpentizados que difícilmente se distinguen de la pasta debido a su color similar. Es una roca de aspecto fresco.

Descripción microscópica:

Composición: Plagioclase (50%), piroxeno (25%), olivina (serpentina) (17%), magnetita (5%).

Textura: Porfirita; pasta halocristalina, microlítica.

Los pseudomorfos de serpentina según olivina son sub 6- cuadrales. Su aspecto es el usual con el mallaado característico. La serpentina: microlítico es de color pardo verdoso claro, aunque
en partes es incolora. Su brillosfringencia es moderada a fuerte. Aunque los pseudomorfosis pueden alcanzar a 2 ó 3 mm son más frecuentes les de pequeño tamaño, que puede decirse que forman parte de la pasta. La plagioclasa (labradorita media básica) se presenta en pequeñas (10-20 mm) tabillas macizas, frescas y díver centros. El piroxeno es de tipo suástico, verde pálido, extinción 2C=45°-27°(+) moderado a grande; su tamaño es pequeño, en general algo menor que el del feldespato. Su hábito prismático, ocasionalmente intersticial. La magnetita es regularmente abundante y conspicua, en cristales cuboideas. Se observa además agujitas y escamas de ilmenita, muy frecuentes, a menudo en grupos de orientación paralela. Como material intersticial se encuentran agregados a veces esferulíticos, de serpentina (antigorita).

92 - Basalto olivínico

Procedencia: Lava del volcán Osorno, Puerto Varas.

Descripción macroscópica: Roca ígnea, de color oscuro, de grano muy fino, casi afánico, y abundantes fenocristales blanquecinos de feldespato, pequeños (1-2 mm). Se observan pequeñas cavidades de contorno cuadrangular, que parecen haber sido ocupadas por feldespato. Existen, además de los fenocristales descriptos, algunos mucho más pequeños, y más abundantes. La roca es fresca.

Descripción microscópica:

Composición: Plagioclasa (50%), clinopiroxeno (25%), olivina (10%), magnetita (10%), vidrio (4%).

Textura: Portítica, microclínico.

La plagioclasa (labradorita media) se presenta en tablillas de dimensiones variables, frescas, bien macladas, zonales. Llevan con frecuencia numerosas inclusiones de lamillitas de ilmenita (?)
La olivina ocurre como microfesocrístales subódreles frescos. El piroxeno forma la mayor parte de la pasta, en forma de prismas de color verde pálido no pleocromos cuyo ángulo 2C es próximo a 45°, siendo probablemente agresa. El vidrio interstitial es de color pardos

Agosto de 1945.

Félix González Bonorino.
Fig. 1 - Granito (1). Feldespato potásico atravesado por venas períticas. Entre dos cristales, la albita se dispone en una fea delgada e irregular formada por cristalitos en parte nacelados. Pequeños individuos de plagioclasa, incluidos en el feldespato potásico, muestran alteración sericitica. x 60. Mic.+

Fig. 2 - Granito (3). Penetración de plagioclasa albitica en feldespato potásico. La vena conserva la misma orientación que el cristal de donde procede, hasta el punto x, en donde cambia para adaptarse a la de la ortoclasa, haciéndose al mismo tiempo más albitica. x 60. Mic.
Lámina II

Fig.1 - Granito (1). Reemplazo de feldespato potásico por albita. x 63. Mic. +

Fig.2 - Granito (4). Partidas de reemplazo en ortoclasa. Observe el cambio en la orientación óptica de las venas al cruzar el plano de malla, adaptándose a la de cada uno de los individuos. x 32. Mic. +
Fig. 1 - Mármol granítico (5). Venas albíticas en felisapatito potáxico. Las partitas son, como en todos los casos, aproximadamente paralelas al primer pinacoide. x 32. Mic.†

Fig. 2 - Adamellite (12). Microclina mostrando venas albíticas de reemplazo de formas irregulares, y partitas de exfoliación delgadas, rectas y discontinuas. También se observa el maclado característico. x 63. Mic.†
Fig. 1 - Ademollite (10). Cristales de plagioclasa y necesarios de feldespato potásico. La plagioclasa muestra márgenes albiticos. Los cristales mayores de plagioclasa muestran autóclase reemplazada por albite, que aparece en manchas irregulares y límpidas, con nucleos finos. X 25. Mic. †

Fig. 2 - Granodiorite (11). Cristales de plagioclasa maduro en una base de feldespato potásico. Observe el promedio de márgenes albiticos, de bordes levemente féticos. El núcleo de la plagioclase presenta alteración en sericitas. X 50. Mic. †
Fig. 1 - Enquisto cuarzo-micácico (49). La figura muestra un agregado de clorita y biotita, producto de la alteración de un cristal de granato ("diaphtoresis"). Observe la marcada foliación que presenta la roca. x 19.Mic. //

Fig. 2 - Granito micrográficico (44). Intercrecimiento micrográficico de cuarzo y feldespato potásico. x 46.Mic.